首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 783 毫秒
1.
Although the cerebrovasculature is known to be exquisitely sensitive to CO(2), there is no consensus on whether the sympathetic nervous system plays a role in regulating cerebrovascular responses to changes in arterial CO(2). To address this question, we investigated human cerebrovascular CO(2) reactivity in healthy participants randomly assigned to the α(1)-adrenoreceptor blockade group (9 participants; oral prazosin, 0.05 mg/kg) or the placebo control (9 participants) group. We recorded mean arterial blood pressure (MAP), heart rate (HR), mean middle cerebral artery flow velocity (MCA(V mean)), and partial pressure of end-tidal CO(2) (Pet(CO(2))) during 5% CO(2) inhalation and voluntary hyperventilation. CO(2) reactivity was quantified as the slope of the linear relationship between breath-to-breath Pet(CO(2)) and the average MCAv(mean) within successive breathes after accounting for MAP as a covariate. Prazosin did not alter resting HR, Pet(CO(2)), MAP, or MCA(V mean). The reduction in hypocapnic CO(2) reactivity following prazosin (-0.48 ± 0.093 cm·s(-1)·mmHg(-1)) was greater compared with placebo (-0.19 ± 0.087 cm·s(-1)·mmHg(-1); P < 0.05 for interaction). In contrast, the change in hypercapnic CO(2) reactivity following prazosin (-0.23 cm·s(-1)·mmHg(-1)) was similar to placebo (-0.31 cm·s(-1)·mmHg(-1); P = 0.50 for interaction). These data indicate that the sympathetic nervous system contributes to CO(2) reactivity via α(1)-adrenoreceptors; blocking this pathway with prazosin reduces CO(2) reactivity to hypocapnia but not hypercapnia.  相似文献   

2.
The primary purpose of this Brain in Motion (BIM) sub-study was to determine the 6-month stability of resting blood flow velocity and cerebrovascular responsiveness to a euoxic hypercapnic challenge in a group of physically inactive community dwelling men and men aged ≥55 yrs (range 55–92 yrs). At baseline and 6 months later 88 women (65±6 yr) and 78 men (67±7 yr) completed a hypercapnic challenge (step changes from resting end-tidal PCO2 ((PETCO2) to +1, +5 and +8 mmHg above rest) while cerebral blood flow velocity was assessed using transcranial Doppler ultrasound. Peak velocity of the middle cerebral artery (MCAv) was increased (p<0.05) at the second visit during rest (51±2 vs. 52±4); however, these differences were abolished (p>0.05) when MCAv was normalized to PETCO2. During hypercapnia, MCAv tended to be increased at follow-up, but this finding was absent when MCAv/PETCO2 was compared across time. Cerebrovascular reactivity (i.e., ΔMCAv/ΔPETCO2) was similar (p>0.05) between testing occasions regardless of the approach taken (i.e., considering only the lower step [from +1 to +5 mmHg]; the upper step [+5 to +8 mmHg]; or the complete test taken together). In conclusion, this study has shown that cerebral blood flow and cerebrovascular responsiveness to acute euoxic hypercapnia are stable in older, healthy adults over a 6-month period. Modest changes in MCAv over time must be viewed in the context of underlying differences in PETCO2, an important finding with implications for future studies considering cerebral blood flow velocity.  相似文献   

3.
We examined the effects of exposure to 10-12 days intermittent hypercapnia [IHC: 5:5-min hypercapnia (inspired fraction of CO(2) 0.05)-to-normoxia for 90 min (n = 10)], intermittent hypoxia [IH: 5:5-min hypoxia-to-normoxia for 90 min (n = 11)] or 12 days of continuous hypoxia [CH: 1,560 m (n = 7)], or both IH followed by CH on cardiorespiratory and cerebrovascular function during steady-state cycling exercise with and without hypoxia (inspired fraction of oxygen, 0.14). Cerebrovascular reactivity to CO(2) was also monitored. During all procedures, ventilation, end-tidal gases, blood pressure, muscle and cerebral oxygenation (near-infrared spectroscopy), and middle cerebral artery blood flow velocity (MCAv) were measured continuously. Dynamic cerebral autoregulation (CA) was assessed using transfer-function analysis. Hypoxic exercise resulted in increases in ventilation, hypocapnia, heart rate, and cardiac output when compared with normoxic exercise (P < 0.05); these responses were unchanged following IHC but were elevated following the IH and CH exposure (P < 0.05) with no between-intervention differences. Following IH and/or CH exposure, the greater hypocapnia during hypoxic exercise provoked a decrease in MCAv (P < 0.05 vs. preexposure) that was related to lowered cerebral oxygenation (r = 0.54; P < 0.05). Following any intervention, during hypoxic exercise, the apparent impairment in CA, reflected in lowered low-frequency phase between MCAv and BP, and MCAv-CO(2) reactivity, were unaltered. Conversely, during hypoxic exercise following both IH and/or CH, there was less of a decrease in muscle oxygenation (P < 0.05 vs. preexposure). Thus IH or CH induces some adaptation at the muscle level and lowers MCAv and cerebral oxygenation during hypoxic exercise, potentially mediated by the greater hypocapnia, rather than a compromise in CA or MCAv reactivity.  相似文献   

4.
We tested the hypothesis that, following exposure to high altitude, cerebrovascular reactivity to CO2 and cerebral autoregulation would be attenuated. Such alterations may predispose to central sleep apnea at high altitude by promoting changes in brain PCO2 and thus breathing stability. We measured middle cerebral artery blood flow velocity (MCAv; transcranial Doppler ultrasound) and arterial blood pressure during wakefulness in conditions of eucapnia (room air), hypocapnia (voluntary hyperventilation), and hypercapnia (isooxic rebeathing), and also during non-rapid eye movement (stage 2) sleep at low altitude (1,400 m) and at high altitude (3,840 m) in five individuals. At each altitude, sleep was studied using full polysomnography, and resting arterial blood gases were obtained. During wakefulness and polysomnographic-monitored sleep, dynamic cerebral autoregulation and steady-state changes in MCAv in relation to changes in blood pressure were evaluated using transfer function analysis. High altitude was associated with an increase in central sleep apnea index (0.2 +/- 0.4 to 20.7 +/- 23.2 per hour) and an increase in mean blood pressure and cerebrovascular resistance during wakefulness and sleep. MCAv was unchanged during wakefulness, whereas there was a greater decrease during sleep at high altitude compared with low altitude (-9.1 +/- 1.7 vs. -4.8 +/- 0.7 cm/s; P < 0.05). At high altitude, compared with low altitude, the cerebrovascular reactivity to CO2 in the hypercapnic range was unchanged (5.5 +/- 0.7 vs. 5.3 +/- 0.7%/mmHg; P = 0.06), while it was lowered in the hypocapnic range (3.1 +/- 0.7 vs. 1.9 +/- 0.6%/mmHg; P < 0.05). Dynamic cerebral autoregulation was further reduced during sleep (P < 0.05 vs. low altitude). Lowered cerebrovascular reactivity to CO2 and reduction in both dynamic cerebral autoregulation and MCAv during sleep at high altitude may be factors in the pathogenesis of breathing instability.  相似文献   

5.
Sympathetic nerve activity influences cerebral blood flow, but it is unknown whether augmented sympathetic nerve activity resets cerebral vasoreactivity to hypercapnia. This study tested the hypothesis that cerebral vasodilation during hypercapnia is restrained by lower-body negative pressure (LBNP)-stimulated sympathoexcitation. Cerebral hemodynamic responses were assessed in nine healthy volunteers [age 25 yr (SD 3)] during rebreathing-induced increases in partial pressure of end-tidal CO(2) (Pet(CO(2))) at rest and during LBNP. Cerebral hemodynamic responses were determined by changes in flow velocity of middle cerebral artery (MCAV) using transcranial Doppler sonography and in regional cerebral tissue oxygenation (ScO(2)) using near-infrared spectroscopy. Pet(CO(2)) values during rebreathing were similarly increased from 41.9 to 56.5 mmHg at rest and from 40.7 to 56.0 mmHg during LBNP of -15 Torr. However, the rates of increases in MCAV and in ScO(2) per unit increase in Pet(CO(2)) (i.e., the slopes of MCAV/Pet(CO(2)) and ScO(2)/Pet(CO(2))) were significantly (P ≤0.05) decreased from 2.62 ± 0.16 cm·s(-1)·mmHg(-1) and 0.89 ± 0.10%/mmHg at rest to 1.68 ± 0.18 cm·s(-1)·mmHg(-1) and 0.63 ± 0.07%/mmHg during LBNP. In conclusion, the sensitivity of cerebral vasoreactivity to hypercapnia, in terms of the rate of increases in MCAV and in ScO(2), is diminished by LBNP-stimulated sympathoexcitation.  相似文献   

6.
We hypothesized that, in healthy subjects without pharmacological intervention, an overnight reduction in cerebrovascular CO(2) reactivity would be associated with an elevated hypercapnic ventilatory [ventilation (VE)] responsiveness and a reduction in cerebral oxygenation. In 20 healthy male individuals with no sleep-related disorders, continuous recordings of blood velocity in the middle cerebral artery, arterial blood pressure, VE, end-tidal gases, and frontal cortical oxygenation using near infrared spectroscopy were monitored during hypercapnia (inspired CO(2), 5%), hypoxia [arterial O(2) saturation (Sa(O(2))) approximately 84%], and during a 20-s breath hold to investigate the related responses to hypercapnia, hypoxia, and apnea, respectively. Measurements were conducted in the evening (6-8 PM) and in the early morning (6-8 AM). From evening to morning, the cerebrovascular reactivity to hypercapnia was reduced (5.3 +/- 0.6 vs. 4.6 +/- 1.1%/Torr; P < 0.05) and was associated with a reduced increase in cerebral oxygenation (r = 0.39; P < 0.05) and an elevated morning hypercapnic VE response (r = 0.54; P < 0.05). While there were no overnight changes in cerebrovascular reactivity or VE response to hypoxia, there was greater cerebral desaturation for a given Sa(O(2)) in the morning (AM, -0.45 +/- 0.14 vs. PM, -0.35 +/- 0.14%/Sa(O(2)); P < 0.05). Following the 20-s breath hold, in the morning, there was a smaller surge middle cerebral artery velocity and cerebral oxygenation (P < 0.05 vs. PM). These data indicate that normal diurnal changes in the cerebrovascular response to CO(2) influence the hypercapnic ventilatory response as well as the level of cerebral oxygenation during changes in arterial Pco(2); this may be a contributing factor for diurnal changes in breathing stability and the high incidence of stroke in the morning.  相似文献   

7.
The influence of severe passive heat stress and hypohydration (Hypo) on cardiorespiratory and cerebrovascular function is not known. We hypothesized that 1) heating-induced hypocapnia and peripheral redistribution of cardiac output (Q) would compromise blood flow velocity in the middle cerebral artery (MCAv) and cerebral oxygenation; 2) Hypo would exacerbate the hyperthermic-induced hypocapnia, further decreasing MCAv; and 3) heating would reduce MCAv-CO2 reactivity, thereby altering ventilation. Ten men, resting supine in a water-perfused suit, underwent progressive hyperthermia [0.5 degrees C increments in core (esophageal) temperature (TC) to +2 degrees C] while euhydrated (Euh) or Hypo by 1.5% body mass (attained previous evening). Time-control (i.e., non-heat stressed) data were obtained on six of these subjects. Cerebral oxygenation (near-infrared spectroscopy), MCAv, end-tidal carbon dioxide (PetCO2) and arterial blood pressure, Q (flow model), and brachial and carotid blood flows (CCA) were measured continuously each 0.5 degrees C change in TC. At each level, hypercapnia was achieved through 3-min administrations of 5% CO2, and hypocapnia was achieved with controlled hyperventilation. At baseline in Hypo, heart rate, MCAv and CCA were elevated (P<0.05 vs. Euh). MCAv-CO2 reactivity was unchanged in both groups at all TC levels. Independent of hydration, hyperthermic-induced hyperventilation caused a severe drop in PetCO2 (-8+/-1 mmHg/ degrees C), which was related to lower MCAv (-15+/-3%/ degrees C; R2=0.98; P<0.001). Elevations in Q were related to increases in brachial blood flow (R2=0.65; P<0.01) and reductions in MCAv (R2=0.70; P<0.01), reflecting peripheral distribution of Q. Cerebral oxygenation was maintained, presumably via enhanced O2-extraction or regional differences in cerebral perfusion.  相似文献   

8.
Obstructive sleep apnea (OSA) increases the risk of stroke independent of known vascular and metabolic risk factors. Although patients with OSA have higher prevalence of hypertension and evidence of hypercoagulability, the mechanism of this increased risk is unknown. Obstructive apnea events are associated with surges in blood pressure, hypercapnia, and fluctuations in cerebral blood flow. These perturbations can adversely affect the cerebral circulation. We hypothesized that patients with OSA have impaired cerebral autoregulation, which may contribute to the increased risk of cerebral ischemia and stroke. We examined cerebral autoregulation in patients with and without OSA by measuring cerebral artery blood flow velocity (CBFV) by using transcranial Doppler ultrasound and arterial blood pressure using finger pulse photoplethysmography during orthostatic hypotension and recovery as well as during 5% CO(2) inhalation. Cerebral vascular conductance and reactivity were determined. Forty-eight subjects, 26 controls (age 41.0+/-2.3 yr) and 22 OSA (age 46.8+/-2.3 yr) free of cerebrovascular and active coronary artery disease participated in this study. OSA patients had a mean apnea-hypopnea index of 78.4+/-7.1 vs. 1.8+/-0.3 events/h in controls. The oxygen saturation during sleep was significantly lower in the OSA group (78+/-2%) vs. 91+/-1% in controls. The dynamic vascular analysis showed mean CBFV was significantly lower in OSA patients compared with controls (48+/-3 vs. 55+/-2 cm/s; P <0.05, respectively). The OSA group had a lower rate of recovery of cerebrovascular conductance for a given drop in blood pressure compared with controls (0.06+/-0.02 vs. 0.20+/-0.06 cm.s(-2).mmHg(-1); P <0.05). There was no difference in cerebrovascular vasodilatation in response to CO(2). The findings showed that patients with OSA have decreased CBFV at baseline and delayed cerebrovascular compensatory response to changes in blood pressure but not to CO(2). These perturbations may increase the risk of cerebral ischemia during obstructive apnea.  相似文献   

9.
We tested the hypothesis that dehydration exacerbates reductions of middle cerebral artery blood velocity (MCAv) and alters cerebrovascular control during standing after heavy resistance exercise. Ten males participated in two trials under 1) euhydration (EUH) and 2) dehydration (DEH; fluid restriction + 40 mg furosemide). We recorded finger photoplethysmographic arterial pressure and MCAv (transcranial Doppler) during 10 min of standing immediately after high-intensity leg press exercise. Symptoms (e.g., lightheadedness) were ranked by subjects during standing (1-5 scale). Low-frequency (LF) oscillations of mean arterial pressure (MAP) and mean MCAv were calculated as indicators of cerebrovascular control. DEH reduced plasma volume by 11% (P = 0.002; calculated from hemoglobin and hematocrit). During the first 30 s of standing after exercise, subjects reported greater symptoms during DEH vs. EUH (P = 0.05), but these were mild and resolved at 60 s. While MAP decreased similarly between conditions immediately after standing, MCAv decreased more with DEH than EUH (P = 0.02). With prolonged standing under DEH, mean MCAv remained below baseline (P ≤ 0.01), and below EUH values (P ≤ 0.05). LF oscillations of MAP were higher for DEH at baseline and during the entire 10 min of stand after exercise (P ≤ 0.057), while LF oscillations in mean MCAv were distinguishable only at baseline and 5 min following stand (P = 0.05). Our results suggest that mean MCAv falls below a "symptomatic threshold" in the acute phase of standing after exercise during DEH, although symptoms were mild and transient. During the prolonged phase of standing, increases in LF MAP and mean MCAv oscillations with DEH may help to maintain cerebral perfusion despite absolute MCAv remaining below the symptomatic threshold.  相似文献   

10.
D W Busija 《Prostaglandins》1985,30(2):229-239
The role of prostanoids in regulation of the renal circulation during hypercapnia was examined in unanesthetized rabbits. Renal blood flow (RBF) was determined with 15 micron radioactive microspheres during normocapnia (PaCO2 congruent to 30 mmHg) and hypercapnia (PaCO2 congruent to 60 mmHg), before and after intravenous administration of indomethacin (10 mg/kg) or vehicle (n = 6 for each group). Arterial blood pressure was not different among the 4 conditions in each group. RBF was 438 +/- 61 and 326 +/- 69 (P less than 0.05) ml/min per 100 g during normocapnia and hypercapnia, respectively, before indomethacin, and following administration of indomethacin, RBF was 426 +/- 59 ml/min per 100 g during normocapnia and 295 +/- 60 ml/min per 100 g during hypercapnia (P less than 0.05). In the vehicle group, RBF was 409 +/- 74 and 226 +/- 45 (P less than 0.05) ml/min per 100 g during normocapnia and hypercapnia, respectively, before vehicle; and following administration of vehicle, RBF was 371 +/- 46 ml/min per 100 g during normocapnia and 219 +/- 50 (P less than 0.05) ml/min per 100 g during hypercapnia. RBF during normocapnia was not affected by administration of indomethacin or vehicle. The successive responses to hypercapnia were not different within the indomethacin and vehicle groups, and the second responses to hypercapnia were not different between the two groups. These findings suggest that prostanoids do not contribute significantly to regulation of the renal circulation during normocapnia and hypercapnia in unanesthetized rabbits.  相似文献   

11.
We investigated cerebrovascular vasodilator responses to increased arterial CO2 and the cerebrovascular response to infused 5-hydroxytryptamine (5-HT) in normal and hypercholesterolemic baboons. After 6-8 weeks of feeding an atherogenic diet the plasma cholesterol levels were increased without change in the triglycerides. The hypercholesterolemic animals showed a higher basal systemic arterial blood pressure than the normal controls without significant decrease in cerebrovascular prostacyclin production, altered basal cerebral blood flow or altered cerebrovascular response to infused 5-HT. However, the vasodilator response to hypercapnia was significantly decreased from the control value of 2.78 ml/min per mmHg increase in PCO2, to 1.62 ml/min per mmHg. Thus functional impairment of cerebral hemodynamics occurred before atherosclerotic alteration in the cerebral vessels could have been present.  相似文献   

12.
Hypercapnia-induced cerebral vasodilation is associated with prostanoids in the piglet, but is a primarily nitric oxide (NO) associated response in many adult models. Hypercapnia-induced cerebral vasodilation is both NO and prostanoid associated in the juvenile pig. We hypothesized that with chronic administration of indomethacin the piglet would advance the role of the NO system in cerebrovascular responses. The closed cranial window technique was used in piglets to determine pial arteriolar response. Chronically indomethacin treated newborn animals dilated in response to CO2 similarly to control newborns (40.9+/-4.4% vs 48.4+/-4.1%). Topical n-nitro L-arginine (L-NA, 10(-3) M), attenuated CO2 induced dilation in the chronically indomethacin treated animals (11.7+/-3.3% vs 40.9+/-4.4%; p < 0.001), but had no effect on the response to hypercapnia of piglets not treated with indomethacin. Neither indomethacin nor L-NA altered response to topical isoproterenol (10(-6) M). We conclude that with chronic indomethacin administration there develops a significant hypercapnia-induced cerebral vasodilation in which NO has an important role. The chronic inhibition of the newborn's principal dilator system appears to increase the role of NO in newborn cerebral hemodynamics.  相似文献   

13.
In humans, cerebrovascular responses to alterations in arterial Pco(2) and Po(2) are well documented. However, few studies have investigated human coronary vascular responses to alterations in blood gases. This study investigated the extent to which the cerebral and coronary vasculatures differ in their responses to euoxic hypercapnia and isocapnic hypoxia in healthy volunteers. Participants (n = 15) were tested at rest on two occasions. On the first visit, middle cerebral artery blood velocity (V(P)) was assessed using transcranial Doppler ultrasound. On the second visit, coronary sinus blood flow (CSBF) was measured using cardiac MRI. For comparison with V(P), CSBF was normalized to the rate pressure product [an index of myocardial oxygen consumption; normalized (n)CSBF]. Both testing sessions began with 5 min of euoxic [end-tidal Po(2) (Pet(O(2))) = 88 Torr] isocapnia [end-tidal Pco(2) (Pet(CO(2))) = +1 Torr above resting values]. Pet(O(2)) was next held at 88 Torr, and Pet(CO(2)) was increased to 40 and 45 Torr in 5-min increments. Participants were then returned to euoxic isocapnia for 5 min, after which Pet(O(2)) was decreased from 88 to 60, 52 and 45 Torr in 5-min decrements. Changes in V(P) and nCSBF were normalized to isocapnic euoxic conditions and indexed against Pet(CO(2)) and arterial oxyhemoglobin saturation. The V(P) gain for euoxic hypercapnia (%/Torr) was significantly higher than nCSBF (P = 0.030). Conversely, the V(P) gain for isocapnic hypoxia (%/%desaturation) was not different from nCSBF (P = 0.518). These findings demonstrate, compared with coronary circulation, that the cerebral circulation is more sensitive to hypercapnia but similarly sensitive to hypoxia.  相似文献   

14.
The effects of discontinuous hypoxia on cerebrovascular regulation in humans are unknown. We hypothesized that five nocturnal hypoxic exposures (8 h/day) at a simulated altitude of 4,300 m (inspired O2 fraction = approximately 13.8%) would elicit cerebrovascular responses that are similar to those that have been reported during chronic altitude exposures. Twelve male subjects (26.6 +/- 4.1 yr, mean +/- SD) volunteered for this study. The technique of end-tidal forcing was used to examine cerebral blood flow (CBF) and regional cerebral O2 saturation (Sr(O2)) responses to acute variations in O2 and CO2 twice before, immediately after, and 5 days after the overnight hypoxic exposures. Transcranial Doppler ultrasound was used to assess CBF, and near-infrared spectroscopy was used to assess Sr(O2). Throughout the nocturnal hypoxic exposures, end-tidal Pco2 decreased (P < 0.001) whereas arterial O2 saturation increased (P < 0.001) compared with overnight normoxic control measurements. Symptoms associated with altitude illness were significantly greater than control values on the first night (P < 0.001) and second night (P < 0.01) of nocturnal hypoxia. Immediately after the nocturnal hypoxic intervention, the sensitivity of CBF to acute variations in O2 and CO2 increased 116% (P < 0.01) and 33% (P < 0.05), respectively, compared with control values. Sr(O2) was highly correlated with arterial O2 saturation (R2 = 0.94 +/- 0.04). These results show that discontinuous hypoxia elicits increases in the sensitivity of CBF to acute variations in O2 and CO2, which are similar to those observed during chronic hypoxia.  相似文献   

15.
Long duration habitation on the International Space Station (ISS) is associated with chronic elevations in arterial blood pressure in the brain compared with normal upright posture on Earth and elevated inspired CO(2). Although results from short-duration spaceflights suggested possibly improved cerebrovascular autoregulation, animal models provided evidence of structural and functional changes in cerebral vessels that might negatively impact autoregulation with longer periods in microgravity. Seven astronauts (1 woman) spent 147 ± 49 days on ISS. Preflight testing (30-60 days before launch) was compared with postflight testing on landing day (n = 4) or the morning 1 (n = 2) or 2 days (n = 1) after return to Earth. Arterial blood pressure at the level of the middle cerebral artery (BP(MCA)) and expired CO(2) were monitored along with transcranial Doppler ultrasound assessment of middle cerebral artery (MCA) blood flow velocity (CBFV). Cerebrovascular resistance index was calculated as (CVRi = BP(MCA)/CBFV). Cerebrovascular autoregulation and CO(2) reactivity were assessed in a supine position from an autoregressive moving average (ARMA) model of data obtained during a test where two breaths of 10% CO(2) were given four times during a 5-min period. CBFV and Doppler pulsatility index were reduced during -20 mmHg lower body negative pressure, with no differences pre- to postflight. The postflight indicator of dynamic autoregulation from the ARMA model revealed reduced gain for the CVRi response to BP(MCA) (P = 0.017). The postflight responses to CO(2) were reduced for CBFV (P = 0.056) and CVRi (P = 0.047). These results indicate that long duration missions on the ISS impaired dynamic cerebrovascular autoregulation and reduced cerebrovascular CO(2) reactivity.  相似文献   

16.
Nine men completed a 24-h exercise trial, with physiological testing sessions before (T1, approximately 0630), during (T2, approximately 1640; T3, approximately 0045; T4, approximately 0630), and 48-h afterwards (T5, approximately 0650). Participants cycled and ran/trekked continuously between test sessions. A 24-h sedentary control trial was undertaken in crossover order. Within testing sessions, participants lay supine and then stood for 6 min, while heart rate variability (spectral analysis of ECG), middle cerebral artery perfusion velocity (MCAv), mean arterial pressure (MAP; Finometer), and end-tidal Pco(2) (Pet(CO(2))) were measured, and venous blood was sampled for cardiac troponin I. During the exercise trial: 1) two, six, and four participants were orthostatically intolerant at T2, T3, and T4, respectively; 2) changes in heart rate variability were only observed at T2; 3) supine MAP (baseline = 81 +/- 6 mmHg) was lower (P < 0.05) by 14% at T3 and 8% at T4, whereas standing MAP (75 +/- 7 mmHg) was lower by 16% at T2, 37% at T3, and 15% at T4; 4) Pet(CO(2)) was reduced (P < 0.05) at all times while supine (-3-4 Torr) and standing (-4-5 Torr) during exercise trial; 5) standing MCAv was reduced (P < 0.05) by 23% at T3 and 30% at T4 during the exercise trial; 6) changes in MCAv with standing always correlated (P < 0.01) with changes in Pet(CO(2)) (r = 0.78-0.93), but only with changes in MAP at T1, T2, and T3 (P < 0.05; r = 0.62-0.84); and 7) only two individuals showed minor elevations in cardiac troponin I. Recovery was complete within 48 h. During prolonged exercise, postural-induced hypotension and hypocapnia exacerbate cerebral hypoperfusion and facilitate syncope.  相似文献   

17.
Severe dyslipidemia and the associated oxidative stress could accelerate the age-related decline in cerebrovascular endothelial function and cerebral blood flow (CBF), leading to neuronal loss and impaired learning abilities. We hypothesized that a chronic treatment with the polyphenol catechin would prevent endothelial dysfunction, maintain CBF responses, and protect learning abilities in atherosclerotic (ATX) mice. We treated ATX (C57Bl/6-LDLR(-/-)hApoB(+/+); 3 mo old) mice with catechin (30 mg · kg(-1) · day(-1)) for 3 mo, and C57Bl/6 [wild type (WT), 3 and 6 mo old] mice were used as controls. ACh- and flow-mediated dilations (FMD) were recorded in pressurized cerebral arteries. Basal CBF and increases in CBF induced by whisker stimulation were measured by optical coherence tomography and Doppler, respectively. Learning capacities were evaluated with the Morris water maze test. Compared with 6-mo-old WT mice, cerebral arteries from 6-mo-old ATX mice displayed a higher myogenic tone, lower responses to ACh and FMD, and were insensitive to NOS inhibition (P < 0.05), suggesting endothelial dysfunction. Basal and increases in CBF were lower in 6-mo-old ATX than WT mice (P < 0.05). A decline in the learning capabilities was also observed in ATX mice (P < 0.05). Catechin 1) reduced cerebral superoxide staining (P < 0.05) in ATX mice, 2) restored endothelial function by reducing myogenic tone, improving ACh- and FMD and restoring the sensitivity to nitric oxide synthase inhibition (P < 0.05), 3) increased the changes in CBF during stimulation but not basal CBF, and 4) prevented the decline in learning abilities (P < 0.05). In conclusion, catechin treatment of ATX mice prevents cerebrovascular dysfunctions and the associated decline in learning capacities.  相似文献   

18.
Clinical transcranial Doppler assessment of cerebral vasomotor reactivity (CVMR) uses linear regression of cerebral blood flow velocity (CBFV) vs. end-tidal CO(2) (Pet(CO(2))) under steady-state conditions. However, the cerebral blood flow (CBF)-Pet(CO(2)) relationship is nonlinear, even for moderate changes in CO(2). Moreover, CBF is increased by increases in arterial blood pressure (ABP) during hypercapnia. We used a modified rebreathing protocol to estimate CVMR during transient breath-by-breath changes in CBFV and Pet(CO(2)). Ten healthy subjects (6 men) performed 15 s of hyperventilation followed by 5 min of rebreathing, with supplemental O(2) to maintain arterial oxygen saturation constant. To minimize effects of changes in ABP on CVMR estimation, cerebrovascular conductance index (CVCi) was calculated. CBFV-Pet(CO(2)) and CVCi-Pet(CO(2)) relationships were quantified by both linear and nonlinear logistic regression. In three subjects, muscle sympathetic nerve activity was recorded. From hyperventilation to rebreathing, robust changes occurred in Pet(CO(2)) (20-61 Torr), CBFV (-44 to +104% of baseline), CVCi (-39 to +64%), and ABP (-19 to +23%) (all P < 0.01). Muscle sympathetic nerve activity increased by 446% during hypercapnia. The linear regression slope of CVCi vs. Pet(CO(2)) was less steep than that of CBFV (3 vs. 5%/Torr; P = 0.01). Logistic regression of CBF-Pet(CO(2)) (r(2) = 0.97) and CVCi-Pet(CO(2)) (r(2) = 0.93) was superior to linear regression (r(2) = 0.91, r(2) = 0.85; P = 0.01). CVMR was maximal (6-8%/Torr) for Pet(CO(2)) of 40-50 Torr. In conclusion, CBFV and CVCi responses to transient changes in Pet(CO(2)) can be described by a nonlinear logistic function, indicating that CVMR estimation varies within the range from hypocapnia to hypercapnia. Furthermore, quantification of the CVCi-Pet(CO(2)) relationship may minimize the effects of changes in ABP on the estimation of CVMR. The method developed provides insight into CVMR under transient breath-by-breath changes in CO(2).  相似文献   

19.
顾正中  李民进 《动物学报》1993,39(2):203-208
实验在麻醉及人工呼吸的7只衰老与7只成年SD大鼠上进行。观察脑血管对高、低血碳酸和高、低血氧的脑血液反应,探索衰老动物脑血流反应最为敏感的因素。结果表明,衰老动物对高血碳酸的反应最为敏感,对其余化学因素的反应均不明显。由此提示,对高血碳酸的脑血流反应的测定似可作为诊断衰老脑血管机能状态的一项有参考价值的生理学方法。  相似文献   

20.
One manifestation of age-related declines in vascular function is reduced peripheral (limb) blood flow and vascular conduction at rest and in response to vasodilatory stimuli such as exercise and feeding. Since, even in older age, resistance exercise training (RET) represents an efficacious strategy for increasing muscle mass and function, we hypothesized that likewise RET would improve age-related declines in leg blood flow (LBF) and vascular conductance (LVC). We studied three mixed-sex age groups (young: 18-28 yr, n = 14; middle aged: 45-55 yr, n = 20; older: 65-75 yr, n = 17) before and after 20 wk of whole body RET in the postabsorptive state (BASAL) and after unilateral leg extensions (6 × 8 repetitions; 75% 1 repetition maximum) followed by intermittent mixed-nutrient liquid feeds (~6.5 kJ·kg(-1)·30 min(-1)), which allowed us to discern the acute effects of feeding (nonexercised leg; FED) and exercise plus feeding (exercised leg; FEDEX) on vascular function. We measured LBF using Doppler ultrasound and recorded mean arterial pressure (MAP) to calculate LVC. Our results reveal that although neither age nor RET influenced BASAL LBF, age-related declines in LBF responses to FED were eradicated by RET. Moreover, increases in LBF after FEDEX, which occurred only in young and middle-aged groups before RET (+73 ± 9%, and +90 ± 13%, P < 0.001, respectively), increased in all groups after RET (young +78 ± 10%, middle-aged +96 ± 15%, older +80 ± 19%, P < 0.001). Finally, RET robustly improved LVC under FASTED, FED, and FEDEX conditions in the older group. These data provide novel information that supports the premise that RET represents a valuable strategy to counter age-related impairments in LBF/LVC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号