首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Background information. The integrated analysis of intracellular trafficking pathways is one of the current challenges in the field of cell biology, and functional proteomics has become a powerful technique for the large‐scale identification of proteins or lipids and the elucidation of biological processes in their natural contexts. For this, new dynamic strategies must be devised to trace proteins that follow a specific pathway such that their initial and final destinations can be detected by automated means. Results. Here, we report a novel vectorial strategy for trafficking pathway analysis. This strategy is based on a chemical modification of plasma membrane proteins with a bSuPeR (biotinylated sulfation site peptide reagent) and metabolic labelling in the Golgi apparatus, such that plasma membrane proteins that traffic via the retrograde route become detectable in complex mixtures. Efficient synthesis schemes are presented for tailor‐made chemical tools that are then applied to the step‐by‐step validation of the strategy, using a known retrograde cargo protein: the STxB (Shiga toxin B‐subunit). bSuPeR modification at the plasma membrane does not affect STxB transport to the Golgi apparatus, where the protein is metabolically labelled, allowing its detection in cell lysates. Conclusions. Our vectorial concept proposes a new chemical approach for traffic‐based profiling of proteins that may prove to be applicable to the analysis of diverse endocytic pathways.  相似文献   

2.
Vener AV  Strålfors P 《IUBMB life》2005,57(6):433-440
Vectorial proteomics is a methodology for the differential identification and characterization of proteins and their domains exposed to the opposite sides of biological membranes. Proteomics of membrane vesicles from defined isolated membranes automatically determine cellular localization of the identified proteins and reduce complexity of protein characterizations. The enzymatic shaving of naturally-oriented, or specifically-inverted sealed membrane vesicles, release the surface-exposed peptides from membrane proteins. These soluble peptides are amenable to various chromatographic separations and to sequencing by mass spectrometry, which provides information on the topology of membrane proteins and on their posttranslational modifications. The membrane shaving techniques have made a breakthrough in the identification of in vivo protein phosphorylation sites in membrane proteins form plant photosynthetic and plasma membranes, and from caveolae membrane vesicles of human fat cells. This approach has also allowed investigation of dynamics for in vivo protein phosphorylation in membranes from cells exposed to different conditions. Vectorial proteomics of membrane vesicles with retained peripheral proteins identify extrinsic proteins associated with distinct membrane surfaces, as well as a variety of posttranslational modifications in these proteins. The rapid integration of versatile vectorial proteomics techniques in the functional characterization of biological membranes is anticipated to bring significant insights in cell biology.  相似文献   

3.
The Golgi complex and ER are dynamically connected by anterograde and retrograde trafficking pathways. To what extent and by what mechanism outward‐bound cargo proteins escape retrograde trafficking has been poorly investigated. Here, we analysed the behaviour of several membrane proteins at the ER/Golgi interface in live cells. When Golgi‐to‐plasma membrane transport was blocked, vesicular stomatitis virus glycoprotein (VSVG), which bears an ER export signal, accumulated in the Golgi, whereas an export signal‐deleted version of VSVG attained a steady state determined by the balance of retrograde and anterograde traffic. A similar behaviour was displayed by EGF receptor and by a model tail‐anchored protein, whose retrograde traffic was slowed by addition of VSVG's export signal. Retrograde trafficking was energy‐ and Rab6‐dependent, and Rab6 inhibition accelerated signal‐deleted VSVG's transport to the cell surface. Our results extend the dynamic bi‐directional relationship between the Golgi and ER to include surface‐directed proteins, uncover an unanticipated role for export signals at the Golgi complex, and identify recycling as a novel factor that regulates cargo transport out of the early secretory pathway.  相似文献   

4.
Cells have to maintain stable plasma membrane protein and lipid compositions under normal conditions and to remodel their plasma membranes in response to stimuli. This maintenance and remodeling require that integral membrane proteins at the plasma membrane that become misfolded, because of the relatively harsher extracellular milieu or carbohydrate and amino acid sequence changes, are degraded. We had previously shown that Derlin proteins, required for quality control mechanisms in the endoplasmic reticulum, also localize to endosomes and function in the degradation of misfolded integral membrane proteins at the plasma membrane. In this study, we show that Derlin proteins physically associate with sorting nexins that function in retrograde membrane transport from endosomes to the Golgi apparatus. Using genetic studies in Caenorhabditis elegans and ricin pulse-chase analyses in murine RAW264.7 macrophages, we show that the Derlin-sorting nexin interaction is physiologically relevant. Our studies suggest that at least some integral membrane proteins that are misfolded at the plasma membrane are retrogradely transported to the Golgi apparatus and ultimately to the endoplasmic reticulum for degradation via resident quality control mechanisms.  相似文献   

5.
We have devised an approach for analyzing shotgun proteomics datasets based on the normalized spectral abundance factor that can be used for quantitative proteomics analysis. Three biological replicates of samples enriched for plasma membranes were isolated from S. cerevisiae grown in 14N-rich media and 15N-minimal media and analyzed via quantitative multidimensional protein identification technology. The natural log transformation of NSAF values from S. cerevisiae cells grown in 14N YPD media and 15N-minimal media had a normal distribution. The t-test analysis demonstrated 221 of 1316 proteins were significantly overexpressed in one or the other growth conditions with a p value <0.05. Notably, amino acid transporters were among the 14 membrane proteins that were significantly upregulated in cells grown in minimal media, and we functionally validated these increases in protein expression with radioisotope uptake assays for selected proteins.  相似文献   

6.
The plant plasma membrane is a crucial mediator of the interaction between plants and microbes. Understanding how the plasma membrane proteome responds to diverse immune signaling events will lead to a greater understanding of plant immunity and uncover novel targets for crop improvement. Here we report the results from a large scale quantitative proteomics study of plasma membrane-enriched fractions upon activation of the Arabidopsis thaliana immune receptor RPS2. More than 2300 proteins were identified in total, with 1353 proteins reproducibly identified across multiple replications. Label-free spectral counting was employed to quantify the relative protein abundance between different treatment samples. Over 20% of up-regulated proteins have known roles in plant immune responses. Significantly changing proteins include those involved in calcium and lipid signaling, membrane transport, primary and secondary metabolism, protein phosphorylation, redox homeostasis, and vesicle trafficking. A subset of differentially regulated proteins was independently validated during bacterial infection. This study presents the largest quantitative proteomics data set of plant immunity to date and provides a framework for understanding global plasma membrane proteome dynamics during plant immune responses.  相似文献   

7.
After endocytosis, most cargo enters the pleiomorphic early endosomes in which sorting occurs. As endosomes mature, transmembrane cargo can be sequestered into inwardly budding vesicles for degradation, or can exit the endosome in membrane tubules for recycling to the plasma membrane, the recycling endosome, or the Golgi apparatus. Endosome to Golgi transport requires the retromer complex. Without retromer, recycling cargo such as the MIG‐14/Wntless protein aberrantly enters the degradative pathway and is depleted from the Golgi. Endosome‐associated clathrin also affects the recycling of retrograde cargo and has been shown to function in the formation of endosomal subdomains. Here, we find that the Caemorhabditis elegans endosomal J‐domain protein RME‐8 associates with the retromer component SNX‐1. Loss of SNX‐1, RME‐8, or the clathrin chaperone Hsc70/HSP‐1 leads to over‐accumulation of endosomal clathrin, reduced clathrin dynamics, and missorting of MIG‐14 to the lysosome. Our results indicate a mechanism, whereby retromer can regulate endosomal clathrin dynamics through RME‐8 and Hsc70, promoting the sorting of recycling cargo into the retrograde pathway.  相似文献   

8.
McPherson PS 《Proteomics》2010,10(22):4025-4039
For more than 50 years cell biologists have embraced the concept that biochemical and enzymatic analysis of isolated subcellular fractions provides insight into the function and machineries of cellular compartments including organelles. The utility of this approach has been significantly enhanced with the advent of mass spectrometry leading to the broad application of organelle proteomics. Clathrin-coated vesicles (CCVs) form at the plasma membrane where they select protein and lipid cargo for endocytic entry into cells. CCVs also form at the trans-Golgi network, where they function in protein transport from the secretory pathway to the endosomal/lysosomal system. Herein we will describe how organelle proteomics of CCVs has greatly expanded our knowledge of the machineries, mechanisms and sites of clathrin-mediated membrane trafficking.  相似文献   

9.
BACKGROUND: Locomoting cells exhibit a constant retrograde flow of plasma membrane (PM) proteins from the leading edge lamellipodium backward, which when coupled to substrate adhesion, may drive forward cell movement. However, the intracellular source of these PM components and whether their continuous retrograde flow is required for cell motility is unknown.RESULTS: To test the hypothesis that the anterograde secretion pathway supplies PM components for retrograde flow that are required for lamellipodial activity and cell motility, we specifically inhibited transport of cargo from the trans-Golgi network (TGN) to the PM in Swiss 3T3 fibroblasts and monitored cell motility using time-lapse microscopy. TGN-to-PM trafficking was inhibited with a dominant-negative, kinase-dead (kd) mutant of protein kinase D1 (PKD) that specifically blocks budding of secretory vesicles from the TGN and does not affect other transport pathways. Inhibition of PKD on the TGN inhibited directed cell motility and retrograde flow of surface markers and filamentous actin, while inhibition of PKD elsewhere in the cell neither blocked anterograde membrane transport nor cell motile functions. Exogenous activation of Rac1 in PKD-kd-expressing cells restored lamellipodial dynamics independent of membrane traffic. However, lamellipodial activity was delocalized from a single leading edge, and directed cell motility was not fully recovered.CONCLUSIONS: These results indicate that PKD-mediated anterograde membrane traffic from the TGN to the PM is required for fibroblast locomotion and localized Rac1-dependent leading edge activity. We suggest that polarized secretion transmits cargo that directs localized signaling for persistent leading edge activity necessary for directional migration.  相似文献   

10.
Retrograde transport pathways from early/recycling endosomes to the trans-Golgi network (TGN) are poorly defined. We have investigated the role of TGN golgins in retrograde trafficking. Of the four TGN golgins, p230/golgin-245, golgin-97, GCC185, and GCC88, we show that GCC88 defines a retrograde transport pathway from early endosomes to the TGN. Depletion of GCC88 in HeLa cells by interference RNA resulted in a block in plasma membrane-TGN recycling of two cargo proteins, TGN38 and a CD8 mannose-6-phosphate receptor cytoplasmic tail fusion protein. In GCC88-depleted cells, cargo recycling was blocked in the early endosome. Depletion of GCC88 dramatically altered the TGN localization of the t-SNARE syntaxin 6, a syntaxin required for endosome to TGN transport. Furthermore, the transport block in GCC88-depleted cells was rescued by syntaxin 6 overexpression. Internalized Shiga toxin was efficiently transported from endosomes to the Golgi of GCC88-depleted cells, indicating that Shiga toxin and TGN38 are internalized by distinct retrograde transport pathways. These findings have identified an essential role for GCC88 in the localization of TGN fusion machinery for transport from early endosomes to the TGN, and they have allowed the identification of a retrograde pathway which differentially selects TGN38 and mannose-6-phosphate receptor from Shiga toxin.  相似文献   

11.
The trans-Golgi network (TGN) is a major traffic hub of the cell, as it regulates membrane transport in the secretory pathway as well as receiving protein cargo by retrograde transport from endocytic compartments. Retrograde transport between endosomes and the TGN is essential for the recycling of membrane proteins which regulate a range of cellular and development functions. In addition, retrograde transport pathways are exploited by many bacterial toxins to mediate cytotoxicity and by some viral proteins to promote pathogenicity. Recent advances using a range of molecular cell biological strategies have identified multiple retrograde transport pathways each regulated by a distinct set of molecular machinery. Here we review recent advances in this field and highlight the importance of these transport pathways in a range of physiological processes.  相似文献   

12.
Trafficking of human papillomaviruses to the Golgi apparatus during virus entry requires retromer, an endosomal coat protein complex that mediates the vesicular transport of cellular transmembrane proteins from the endosome to the Golgi apparatus or the plasma membrane. Here we show that the HPV16 L2 minor capsid protein is a retromer cargo, even though L2 is not a transmembrane protein. We show that direct binding of retromer to a conserved sequence in the carboxy-terminus of L2 is required for exit of L2 from the early endosome and delivery to the trans-Golgi network during virus entry. This binding site is different from known retromer binding motifs and can be replaced by a sorting signal from a cellular retromer cargo. Thus, HPV16 is an unconventional particulate retromer cargo, and retromer binding initiates retrograde transport of viral components from the endosome to the trans-Golgi network during virus entry. We propose that the carboxy-terminal segment of L2 protein protrudes through the endosomal membrane and is accessed by retromer in the cytoplasm.  相似文献   

13.
Kinesin-1 anterogradely transports vesicles containing cargo proteins when a protein-protein interaction activates it from an inhibited state. The C-terminal cytoplasmic region of kinesin-1 cargo protein Alcadeinα (Alcα) interacts with the KLC1 subunit's tetratricopeptide repeat (TPR) region, activating kinesin-1's association with vesicles and anterograde transport. We found that either of two 10-amino-acid WD motifs in Alcα cytoplasmic region was necessary and sufficient to initiate this activation. An artificial transmembrane protein containing either WD motif induced kinesin-1's vesicular association and anterograde transport in a KLC-dependent manner, even in the normally inhibiting presence of excess KLC1, thus allowing us to analyze the KLC1 TPR-WD functional interaction in detail in vivo. A part of TPR region was dispensable for the WD motifs' activation of kinesin-1 and transport, indicating that only part of the TPR structure is required for this function in vivo. For a different kinesin-1 cargo protein, JIP1, an 11-amino-acid C-terminal region was sufficient to recruit KLC1 to vesicles, but did not activate transport. These observations suggest that structurally different TPR-interacting peptides may have different effects on kinesin-1. This mechanism may partly explain how kinesin-1 can organize the transport of a wide variety of cargo molecules.  相似文献   

14.
Current model propose that in nonpolarized cells, transport of plasma membrane proteins to the surface occurs by default. In contrast, compelling evidence indicates that in polarized epithelial cells, plasma membrane proteins are sorted in the TGN into at least two vectorial routes to apical and basolateral surface domains. Since both apical and basolateral proteins are also normally expressed by both polarized and nonpolarized cells, we explored here whether recently described basolateral sorting signals in the cytoplasmic domain of basolateral proteins are recognized and used for post TGN transport by nonpolarized cells. To this end, we compared the inhibitory effect of basolateral signal peptides on the cytosol-stimulated release of two basolateral and one apical marker in semi-intact fibroblasts (3T3), pituitary (GH3), and epithelial (MDCK) cells. A basolateral signal peptide (VSVGp) corresponding to the 29-amino acid cytoplasmic tail of vesicular stomatitis virus G protein (VSVG) inhibited with identical potency the vesicular release of VSVG from the TGN of all three cell lines. On the other hand, the VSVG peptide did not inhibit the vesicular release of HA in MDCK cells not of two polypeptide hormones (growth hormone and prolactin) in GH3 cells, whereas in 3T3 cells (influenza) hemagglutinin was inhibited, albeit with a 3x lower potency than VSVG. The results support the existence of a basolateral-like, signal-mediated constitutive pathway from TGN to plasma membrane in all three cell types, and suggest that an apical-like pathway may be present in fibroblast. The data support cargo protein involvement, not bulk flow, in the formation of post-TGN vesicles and predict the involvement of distinct cytosolic factors in the assembly of apical and basolateral transport vesicles.  相似文献   

15.
Proteomics is a very powerful approach to link the information contained in sequenced genomes, like that of Arabidopsis, to the functional knowledge provided by studies of plant cell compartments. This article summarizes the different steps of a versatile strategy that has been developed to decipher plant membrane proteomes. Initiated with envelope membranes from spinach chloroplasts, this strategy has been adapted to thylakoids, and further extended to a series of membranes from the model plant Arabidopsis: chloroplast envelope membranes, plasma membrane, and mitochondrial membranes. The first step is the preparation of highly purified membrane fractions from plant tissues. The second step in the strategy is the fractionation of membrane proteins on the basis of their physico-chemical properties. Chloroform/methanol extraction and washing of membranes with NaOH, NaCl or any other agent led to the simplification of the protein content of the fraction to be analysed. The next step is the genuine proteomic step, i.e. the separation of proteins by 1D-gel electrophoresis followed by in-gel proteolytic digestion of the polypeptides, analysis of the proteolytic peptides using mass spectrometry, and protein identification by searching through databases. The last step is the validation of the procedure by checking the subcellular location. The results obtained by using this strategy demonstrate that a combination of different proteomics approaches, together with bioinformatics, indeed provide a better understanding of the biochemical machinery of the different plant membranes at the molecular level.  相似文献   

16.
Previous work has showed that ergosterol and sphingolipids become sorted to secretory vesicles immunoisolated using a chimeric, artificial raft membrane protein as bait. In this study, we have extended this analysis to three populations of secretory vesicles isolated using natural yeast plasma membrane (PM) proteins: Pma1p, Mid2p and Gap1*p as baits. We compared the lipidomes of the immunoisolated vesicles with each other and with the lipidomes of the donor compartment, the trans-Golgi network, and the acceptor compartment, the PM, using a quantitative mass spectrometry approach that provided a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic feature of vesicles carrying PM cargo and suggests a common lipid-based mechanism for their formation.  相似文献   

17.
Current methods for the quantitation of membrane protein trafficking rely heavily on microscopy, which has limited quantitative capacity for analyses of cell populations and is cumbersome to perform. Here we describe a simple flow cytometry‐based method that circumvents these limitations. The method utilizes fluorescent pulse‐width measurements as a highly sensitive indicator to monitor the changes in intracellular distributions of a fluorescently labelled molecule in a cell. Pulse‐width analysis enabled us to discriminate cells with target proteins in different intracellular locations including Golgi, lyso‐endosomal network and the plasma membrane, as well as detecting morphological changes in organelles such as Golgi perturbation. The movement of endogenous and exogenous retrograde cargo was tracked from the plasma membrane‐to‐endosomes‐to‐Golgi, by decreasing pulse‐width values. A block in transport upon RNAi‐mediated ablation of transport machinery was readily quantified, demonstrating the versatility of this technique to identify pathway inhibitors. We also showed that pulse‐width can be exploited to sort and recover cells based on different intracellular staining patterns, e.g. early endosomes and Golgi, opening up novel downstream applications. Overall, the method provides new capabilities for viewing membrane transport in thousands of cells per minute, unbiased analysis of the trafficking of cargo, and the potential for rapid screening of inhibitors of trafficking pathways.   相似文献   

18.
Cholera toxin enters cells via an unusual pathway that involves trafficking through endosomes to the endoplasmic reticulum (ER). Whether the toxin induces its own pathway or travels along a physiological retrograde route is not known. To study its trafficking, we labeled cholera toxin B (CTB) or endogenous plasma membrane proteins with a small chemical compound, benzylguanine, which covalently reacts with the protein SNAP‐tag. Using ER‐targeted SNAP‐tag as reporter, we found that transport of CTB to the ER depends on dynamin‐2 and syntaxin 5. Plasma membrane proteins and a fluid‐phase marker added to the medium were also transported to the ER. This flux was not affected by exposing cells to CTB but was inhibited by depleting syntaxin 5 and increased by depleting dynamin‐2. As a control for confined intracellular localization of ER‐targeted SNAP‐tag we used adenovirus‐5, which traffics to endosomes and then escapes into the cytosol. The virus did not react with ER‐targeted SNAP but with cytosolic SNAP. Together, our results establish a new method (SNAP‐trap) to study trafficking of different cargo to the ER and the cytosol and provide evidence for the existence of a constitutive pathway from the cell surface to the ER .  相似文献   

19.
Evidence for a sorting endosome in Arabidopsis root cells   总被引:6,自引:0,他引:6  
In eukaryotic cells, the endocytic and secretory pathways are key players in several physiological processes. These pathways are largely inter-connected in animal and yeast cells through organelles named sorting endosomes. Sorting endosomes are multi-vesicular compartments that redirect proteins towards various destinations, such as the lysosomes or vacuoles for degradation, the trans-Golgi network for retrograde transport and the plasma membrane for recycling. In contrast, cross-talk between the endocytic and secretory pathways has not been clearly established in plants, especially in terms of cargo protein trafficking. Here we show by co-localization analyses that endosomes labelled with the AtSORTING NEXIN1 (AtSNX1) protein overlap with the pre-vacuolar compartment in Arabidopsis root cells. In addition, alteration of the routing functions of AtSNX1 endosomes by drug treatments leads to mis-routing of endocytic and secretory cargo proteins. Based on these results, we propose that the AtSNX1 endosomal compartment represents a sorting endosome in root cells, and that this specialized organelle is conserved throughout eukaryotes.  相似文献   

20.
Retrograde transport between endosomes and the trans-Golgi network (TGN) is essential for the recycling of membrane proteins which are involved in a range of biological processes. A variety of machinery components have been identified at the TGN which regulate endosome-to-TGN transport, including small G proteins, SNAREs, tethering factors and scaffold molecules. The challenge is to understand how these regulatory components orchestrate not only the specific docking and fusion of retrograde membrane carriers with the TGN, but also maintain the integrity of this highly dynamic compartment to ensure efficient delivery and export of cargo. Here we review recent advances in defining the form and function of tethers and scaffolds in the regulation of the retrograde transport pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号