首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the Hsp90 molecular chaperone family are found in the cytosol, ER, mitochondria and chloroplasts of eukaryotic cells, as well as in bacteria. These diverse family members cooperate with other proteins, such as the molecular chaperone Hsp70, to mediate protein folding, activation and assembly into multiprotein complexes. All examined Hsp90 homologs exhibit similar ATPase rates and undergo similar conformational changes. One of the key differences is that cytosolic Hsp90 interacts with a large number of cochaperones that regulate the ATPase activity of Hsp90 or have other functions, such as targeting clients to Hsp90. Diverse Hsp90 homologs appear to chaperone different types of client proteins. This difference may reflect either the pool of clients requiring Hsp90 function or the requirement for cochaperones to target clients to Hsp90. This review discusses known functions, similarities and differences between Hsp90 family members and how cochaperones are known to affect these functions. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).  相似文献   

2.
The molecular chaperone Hsp90 is abundant, ubiquitous, and catholic to biological processes in eukaryotes, controlling phosphorylation cascades, protein stability and turnover, client localization and trafficking, and ligand-receptor interactions. Not surprisingly, Hsp90 does not accomplish these activities alone. Instead, an ever-growing number of cochaperones have been identified, leading to an explosion of reports on their molecular and cellular effects on Hsp90 chaperoning of client substrates. Notable among these clients are many members of the steroid receptor family, such as glucocorticoid, androgen, estrogen and progesterone receptors. Cochaperones typically associated with the mature, hormone-competent states of these receptors include p23, the FK506-binding protein 52 (FKBP52), FKBP51, protein phosphatase 5 (PP5) and cyclophilin 40 (Cyp40). The ultimate relevance of these cochaperones to steroid receptor action depends on their physiological effects. In recent years, the first mouse genetic models of these cochaperones have been developed. This work will review the complex and intriguing phenotypes so far obtained in genetically-altered mice and compare them to the known molecular and cellular impacts of cochaperones on steroid receptors. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).  相似文献   

3.
The molecular chaperone Hsp90 has been discovered in the heat-shock response of the fruit fly more than 30years ago. Today, it is becoming clear that Hsp90 is in the middle of a regulatory system, participating in the modulation of many essential client proteins and signaling pathways. Exerting these activities, Hsp90 works together with about a dozen of cochaperones. Due to their organismal simplicity and the possibility to influence their genetics on a large scale, many studies have addressed the function of Hsp90 in several multicellular model systems. Defined pathways involving Hsp90 client proteins have been identified in the metazoan model systems of Caenorhabditis elegans, Drosophila melanogaster and the zebrafish Danio rerio. Here, we summarize the functions of Hsp90 during muscle maintenance, development of phenotypic traits and the involvement of Hsp90 in stress responses, all of which were largely uncovered using the model organisms covered in this review. These findings highlight the many specific and general actions of the Hsp90 chaperone machinery. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).  相似文献   

4.
Hsp90 is a ubiquitous and essential molecular chaperone that plays central roles in many signaling and other cellular pathways. The in vivo and in vitro activity of Hsp90 depends on its association with a wide variety of cochaperones and cofactors, which form large multi-protein complexes involved in folding client proteins. Based on our proteomic work mapping the molecular chaperone interaction networks in yeast, especially that of Hsp90, as well as, on experiments and results presented in the published literature, one major role of Hsp90 appears to be the promotion and maintenance of proper assembly of protein complexes. To highlight this role of Hsp90, the effect of the chaperone on the assembly of the following seven complexes is discussed in this review: snoRNP, RNA polymerase II, phosphatidylinositol-3 kinase-related protein kinase (PIKK), telomere complex, kinetochore, RNA induced silencing complexes (RISC), and 26S proteasome. For some complexes, it is observed that Hsp90 mediates complex assembly by stabilizing an unstable protein subunit and facilitating its incorporation into the complex; for other complexes, Hsp90 promotes change in the composition of that complex. In all cases, Hsp90 does not appear to be part of the final assembled complex. This article is part of a Special Issue entitled:Heat Shock Protein 90 (HSP90).  相似文献   

5.
The 90 kDa heat shock protein (HSP90) is one of major chaperones of eukaryotes which catalyzes maturation and activation of its client proteins. Among the identified client proteins there are oncogene products, hormone or growth factor receptors and key components of signaling pathways responsible for the malignant growth of tumors or their resistance to chemotherapy and radiotherapy. In the case of inhibition of the HSP90 chaperone function, such proteins are inactivated and degraded soon that leads to simultaneous blocking several pathways essential for proliferation and survival of malignant cells; therefore, pharmacological inhibitors of the HSP90 chaperone activity could be used in anticancer therapy. At present, several HSP90 inhibitors are in preclinical testing or I-III Phase clinical trials as mono-agents or in combinations with other anticancer drugs or radiation. In the present review, all the data are summarized which characterize HSP90 inhibitors as effective radiosensitizers of tumor cells. Molecular mechanisms and selectivity of the radiosensitizing action of HSP90 inhibitors are here discussed as well as a possibility of their application to improve the outcome of radiotherapy.  相似文献   

6.
The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins.  相似文献   

7.
热休克蛋白90(HSP90)是一类ATPase依赖性蛋白,作为分子伴侣,可在辅分子伴侣协助下,通过自身构象改变,参与众多细胞的生物学事件,从而协助新合成蛋白的正确折叠、成功装配、功能稳定及异常蛋白的降解过程。HSP90功能的发挥依赖于辅分子伴侣及氨基末端结合的核苷酸。辅分子伴侣是一类可与分子伴侣(如,HSP90)结合并调节其功能的蛋白,通过参与ATPase循环从而调节HSP90分子伴侣的功能。近年来,辅分子伴侣的研究得到越来越多的关注,本文就辅分子伴侣调控HSP90功能的作用进行综述。  相似文献   

8.
The evolutionarily conserved stress-inducible HSP70 molecular chaperone plays a central role in maintaining protein quality control in response to various forms of stress. Constitutively elevated HSP70 expression is a characteristic of many tumor cells and contributes to their survival. We recently identified the small-molecule 2-phenylethyenesulfonamide (PES) as a novel HSP70 inhibitor. Here, we present evidence that PES-mediated inhibition of HSP70 family proteins in tumor cells results in an impairment of the two major protein degradation systems, namely, the autophagy-lysosome system and the proteasome pathway. HSP70 family proteins work closely with the HSP90 molecular chaperone to maintain the stability and activities of their many client proteins, and PES causes a disruption in the HSP70/HSP90 chaperone system. As a consequence, many cellular proteins, including known HSP70/HSP90 substrates, accumulate in detergent-insoluble cell fractions, indicative of aggregation and functional inactivation. Overall, PES simultaneously disrupts several cancer critical survival pathways, supporting the idea of targeting HSP70 as a potential approach for cancer therapeutics.  相似文献   

9.
Heat shock protein 90 (HSP90) is a highly conserved and essential molecular chaperone involved in maturation and activation of signaling proteins in eukaryotes. HSP90 operates as a dimer in a conformational cycle driven by ATP binding and hydrolysis. HSP90 often functions together with co-chaperones that regulate the conformational cycle and/or load a substrate "client" protein onto HSP90. In plants, immune sensing NLR (nucleotide-binding domain and leucine-rich repeat containing) proteins are among the few known client proteins of HSP90. In the process of chaperoning NLR proteins, co-chaperones, RAR1 and SGT1 function together with HSP90. Recent structural and functional analyses indicate that RAR1 dynamically controls conformational changes of the HSP90 dimer, allowing SGT1 to bridge the interaction between NLR proteins and HSP90. Here, we discuss the regulation of NLR proteins by HSP90 upon interaction with RAR1 and SGT1, emphasizing the recent progress in our understanding of the structure and function of the complex. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).  相似文献   

10.
Ppt1 is the yeast member of a novel family of protein phosphatases, which is characterized by the presence of a tetratricopeptide repeat (TPR) domain. Ppt1 is known to bind to Hsp90, a molecular chaperone that performs essential functions in the folding and activation of a large number of client proteins. The function of Ppt1 in the Hsp90 chaperone cycle remained unknown. Here, we analyzed the function of Ppt1 in vivo and in vitro. We show that purified Ppt1 specifically dephosphorylates Hsp90. This activity requires Hsp90 to be directly attached to Ppt1 via its TPR domain. Deletion of the ppt1 gene leads to hyperphosphorylation of Hsp90 in vivo and an apparent decrease in the efficiency of the Hsp90 chaperone system. Interestingly, several Hsp90 client proteins were affected in a distinct manner. Our findings indicate that the Hsp90 multichaperone cycle is more complex than was previously thought. Besides its regulation via the Hsp90 ATPase activity and the sequential binding and release of cochaperones, with Ppt1, a specific phosphatase exists, which positively modulates the maturation of Hsp90 client proteins.  相似文献   

11.
12.
Molecular chaperones play crucial roles in various aspects of the biogenesis and maintenance of proteins in the cell. The heat shock protein 70 (HSP70) chaperone system, in which HSP70 proteins act as chaperones, is one of the major molecular chaperone systems conserved among a variety of organisms. To shed light on the evolutionary history of the constituents of the chordate HSP70 chaperone system and to identify all of the components of the HSP70 chaperone system in ascidians, we carried out a comprehensive survey for HSP70s and their cochaperones in the genome of Ciona intestinalis. We characterized all members of the Ciona HSP70 superfamily, J-proteins, BAG family, and some other types of cochaperones. The Ciona genome contains 8 members of the HSP70 superfamily, all of which have human and protostome counterparts. Members of the STCH subfamily of the HSP70 family and members of the HSPA14 subfamily of the HSP110 family are conserved between humans and protostomes but were not found in Ciona. The Ciona genome encodes 36 J-proteins, 32 of which belong to groups conserved in humans and protostomes. Three proteins seem to be unique to Ciona. J-proteins of the RBJ group are conserved between humans and Ciona but were not found in protostomes, whereas J-proteins of the DNAJC14, ZCSL3, FLJ13236, and C21orf55 groups are conserved between humans and protostomes but were not found in Ciona. J-proteins of the sacsin group seem to be specific to vertebrates. There is also a J-like protein without a conserved HPD tripeptide motif in the Ciona genome. The Ciona genome encodes 3 types of BAG family proteins, all of which have human and protostome counterparts (BAG1, BAG3, and BAT3). BAG2 group is conserved between humans and protostomes but was not found in Ciona, and BAG4 and BAG5 groups seem to be specific to vertebrates. Members for SIL1, UBQLN, UBADC1, TIMM44, GRPEL, and Magmas groups, which are conserved between humans and protostomes, were also found in Ciona. No Ciona member was retrieved for HSPBP1 group, which is conserved between humans and protostomes. For several groups of the HSP70 superfamily, J-proteins, and other types of cochaperones, multiple members in humans are represented by a single counterpart in Ciona. These results show that genes of the HSP70 chaperone system can be distinguished into groups that are shared by vertebrates, Ciona, and protostomes, ones shared by vertebrates and protostomes, ones shared by vertebrates and Ciona, and ones specific to vertebrates, Ciona, or protostomes. These results also demonstrate that the components of the HSP70 chaperone system in Ciona are similar to but simpler than those in humans and suggest that changes of the genome in the lineage leading to humans after the separation from that leading to Ciona increased the number and diversity of members of the HSP70 chaperone system. Changes of the genome in the lineage leading to Ciona also seem to have made the HSP70 chaperone system in this species slightly simpler than that in the common ancestor of humans and Ciona.  相似文献   

13.
The Hsp90 molecular chaperone is required for the function of hundreds of different cellular proteins. Hsp90 and a cohort of interacting proteins called cochaperones interact with clients in an ATP-dependent cycle. Cochaperone functions include targeting clients to Hsp90, regulating Hsp90 ATPase activity, and/or promoting Hsp90 conformational changes as it progresses through the cycle. Over the last 20 years, the list of cochaperones identified in human cells has grown from the initial six identified in complex with steroid hormone receptors and protein kinases to about fifty different cochaperones found in Hsp90-client complexes. These cochaperones may be placed into three groups based on shared Hsp90 interaction domains. Available evidence indicates that cochaperones vary in client specificity, abundance, and tissue distribution. Many of the cochaperones have critical roles in regulation of cancer and neurodegeneration. A more limited set of cochaperones have cellular functions that may be limited to tissues such as muscle and testis. It is likely that a small set of cochaperones are part of the core Hsp90 machinery required for the folding of a wide range of clients. The presence of more selective cochaperones may allow greater control of Hsp90 activities across different tissues or during development.Electronic supplementary materialThe online version of this article (10.1007/s12192-020-01167-0) contains supplementary material, which is available to authorized users.  相似文献   

14.
Cdc37 is a relatively poorly conserved and yet essential molecular chaperone. It has long been thought to function primarily as an accessory factor for Hsp90, notably directing Hsp90 to kinases as substrates. More recent discoveries challenge this simplistic view. Cdc37 client proteins other than kinases have now been found, and Cdc37 displays a variety of Hsp90-independent activities both in vitro and in vivo. It can function as a molecular chaperone by itself, interact with other Hsp90 cochaperones in the absence of Hsp90, and even support yeast growth and protein folding without its Hsp90-binding domain. Thus, for many substrates, there may be many alternative chaperone pathways involving Cdc37, Hsp90, or both.  相似文献   

15.
Allosteric interactions of the molecular chaperone Hsp90 with a large cohort of cochaperones and client proteins allow for molecular communication and event coupling in signal transduction networks. The integration of cochaperones into the Hsp90 system is driven by the regulatory mechanisms that modulate the progression of the ATPase cycle and control the recruitment of the Hsp90 clientele. In this work, we report the results of computational modeling of allosteric regulation in the Hsp90 complexes with the cochaperones p23 and Aha1. By integrating protein docking, biophysical simulations, modeling of allosteric communications, protein structure network analysis and the energy landscape theory we have investigated dynamics and stability of the Hsp90-p23 and Hsp90-Aha1 interactions in direct comparison with the extensive body of structural and functional experiments. The results have revealed that functional dynamics and allosteric interactions of Hsp90 can be selectively modulated by these cochaperones via specific targeting of the regulatory hinge regions that could restrict collective motions and stabilize specific chaperone conformations. The protein structure network parameters have quantified the effects of cochaperones on conformational stability of the Hsp90 complexes and identified dynamically stable communities of residues that can contribute to the strengthening of allosteric interactions. According to our results, p23-mediated changes in the Hsp90 interactions may provide “molecular brakes” that could slow down an efficient transmission of the inter-domain allosteric signals, consistent with the functional role of p23 in partially inhibiting the ATPase cycle. Unlike p23, Aha1-mediated acceleration of the Hsp90-ATPase cycle may be achieved via modulation of the equilibrium motions that facilitate allosteric changes favoring a closed dimerized form of Hsp90. The results of our study have shown that Aha1 and p23 can modulate the Hsp90-ATPase activity and direct the chaperone cycle by exerting the precise control over structural stability, global movements and allosteric communications in Hsp90.  相似文献   

16.
17.
Heat shock protein 90 (HSP90) is a conserved molecular chaperone that functions as part of complexes in which different client proteins target it to diverse sets of substrates. In this paper, HSP90 complexes were investigated in γ-proteobacteria from mild (Shewanella oneidensis) and cold environments (Shewanella frigidimarina and Psychrobacter frigidicola), to determine changes in HSP90 interactions with client proteins in response to the adaptation to cold environments. HSP90 participation in cold adaptation was determined using the specific inhibitor 17-allylamino-geldanamycin. Then, HSP90 was immunoprecipitated from bacterial cultures, and the proteins in HSP90 complexes were analyzed by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. According to HSP90-associated protein analysis, only 15 common proteins were found in both species from the same genus, S. oneidensis and S. frigidimarina, whereas a significant higher number of common proteins were found in both psychrophilic species S. frigidimarina and P. frigidicola 21 (p < 0.001). Only two HSP90-interacting proteins, the chaperone proteins DnaK and GroEL, were common to the three species. Interestingly, some proteins related to energy metabolism (isocitrate lyase, succinyl-CoA synthetase, alcohol dehydrogenase, NAD(+) synthase, and malate dehydrogenase) and some translation factors only interacted with HSP90 in psychrophilic bacteria. We can conclude that HSP90 and HSP90-associated proteins might take part in the mechanism of adaptation to cold environments, and interestingly, organisms living in similar environments conserve similar potential HSP90 interactors in opposition to phylogenetically closely related organisms of the same genus but from different environments.  相似文献   

18.
The ATP-dependent molecular chaperone Hsp90 is an essential and abundant stress protein in the eukaryotic cytosol that cooperates with a cohort of cofactors/cochaperones to fulfill its cellular tasks. We have identified Aha1 (activator of Hsp90 ATPase) and its relative Hch1 (high copy Hsp90 suppressor) as binding partners of Hsp90 in Saccharomyces cerevisiae. By using genetic and biochemical approaches, the middle domain of Hsp90 (amino acids 272-617) was found to mediate the interaction with Aha1 and Hch1. Data base searches revealed that homologues of Aha1 are conserved from yeast to man, whereas Hch1 was found to be restricted to lower eukaryotes like S. cerevisiae and Candida albicans. In experiments with purified proteins, Aha1 but not Hch1 stimulated the intrinsic ATPase activity of Hsp90 5-fold. To establish their cellular role further, we deleted the genes encoding Aha1 and Hch1 in S. cerevisiae. In vivo experiments demonstrated that Aha1 and Hch1 contributed to efficient activation of the heterologous Hsp90 client protein v-Src. Moreover, Aha1 and Hch1 became crucial for cell viability under non-optimal growth conditions when Hsp90 levels are limiting. Thus, our results identify a novel type of cofactor involved in the regulation of the molecular chaperone Hsp90.  相似文献   

19.
20.
Hsp90 is an abundant molecular chaperone involved in many biological systems. We report here the crystal structures of the unliganded and ADP bound fragments containing the N-terminal and middle domains of HtpG, an E. coli Hsp90. These domains are not connected through a flexible linker, as often portrayed in models, but are intimately associated with one another. The individual HtpG domains have similar folding to those of DNA gyrase B but assemble differently, suggesting somewhat different mechanisms for the ATPase superfamily. ADP binds to a subpocket of a large site that is jointly formed by the N-terminal and middle domains and induces conformational changes of the N-terminal domain. We speculate that this large pocket serves as a putative site for binding of client proteins/cochaperones. Modeling shows that ATP is not exposed to the molecular surface, thus implying that ATP activation of hsp90 chaperone activities is accomplished via conformational changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号