首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sildenafil is the first oral PDE5 inhibitor for the treatment of erectile dysfunction and pulmonary arterial hypertension. In the present study, we investigated the effect of sildenafil on adipogenesis in 3T3L1 preadipocytes. Treatment with sildenafil for 8 days significantly promoted adipogenesis characterized by increased lipid droplet and triglyceride content in 3T3L1 cells. Meanwhile, sildenafil induced a pronounced up-regulation of the expression of adipocyte-specific genes, such as aP2 and GLUT4. The results by RT-PCR and Western blotting further showed that sildenafil increased the sequential expression of C/EBPβ, PPARγ and C/EBPα. Additionally, we found that the other two PDE5 inhibitors (vardenafil and tadalafil) and the cGMP analog 8-pCPT-cGMP also increased adipogenesis. Likewise, 8-pCPT-cGMP could up-regulate the expression of adipogenic and adipocyte-specific genes. Importantly, the PKG inhibitor Rp-8-pCPT-cGMP was able to inhibit both sildenafil and 8-pCPT-cGMP-induced adipogenesis. Furthermore, sildenafil promoted basal and insulin-mediated glucose uptake in 3T3L1 cells, which was counteracted by Rp-8-pCPT-cGMP. These results indicate that sildenafil could promote adipogenesis accompanied by increased glucose uptake through a PKG pathway at least partly.  相似文献   

2.
p-Coumaric acid (4-hydroxycinnamic acid) and methyl p-coumarate (methyl 4-hydroxycinnamate) inhibit the oxidation of L-tyrosine catalyzed by mushroom tyrosinase. However, both were oxidized as monophenol substrate analogues at an extremely slow rate. This oxidation was significantly accelerated as soon as catalytic amounts (0.01 mM) of L-3,4-dihydroxyphenylalanine (L-DOPA) became available as a co-factor. Methyl p-coumarate significantly suppressed the melanin formation in B16 mouse melanoma cells, whereas p-coumaric acid did not show this activity.  相似文献   

3.
Control of melanin synthesis and secretion by B16/C3 melanoma cells   总被引:2,自引:0,他引:2  
In culture, B16/C3 murine melanoma cells grown in the presence of serum undergo melanogenesis at a specific time after plating. At this time, melanin is synthesized intracellularly and then secreted into the extracellular culture fluid. We have found that melanin secretion is dependent on the presence of serum in the growth medium. When confluent cultures are deprived of serum, that is, refed with serum-free medium, cells remain viable but do not undergo melanogenesis. Addition of serum-free medium supplemented with either melanocyte-stimulating hormone (MSH) or dibutyryl cAMP induced melanogenesis in these cells but did not result in melanin secretion. Furthermore, when B16/C3 cells are grown in serum-free, hormone-supplemented medium, they also undergo melanogenesis but fail to release melanin. The addition of serum, however, to B16/C3 cells induced to undergo melanogenesis with MSH, dibutyryl cAMP, or hormone-supplemented medium promotes melanin secretion. Fractionation studies hence revealed that serum contains specific factors capable of inducing melanin secretion. These results demonstrate that factors that regulate melanin synthesis are distinct from those that induce cells to release melanin into their extracellular environment. Furthermore, the ability to induce melanogenesis with single factors will permit us to study the precise sequence of events leading to differentiation in B16/C3 cells under chemically defined conditions.  相似文献   

4.
Bufalin, which is one of prominent components of Chinese toad venom, was found to decrease the rate of cell proliferation of mouse melanoma clone B16-F10 cells and a concomitant stimulation of expression of its melanotic phenotype. The effect of bufalin on melanogenesis included stimulation of tyrosinase activity and increase of cellular melanin content. These effects became apparent after 48 hr exposure to 10(-4) M bufalin and increased thereafter. Other cardiotonic steroids, such as cinobufagin and ouabain, at the concentration of 10(-4) M for 6 days, also showed the stimulatory effect on melanin synthesis of B16-F10 cells, but not digitoxigenin.  相似文献   

5.
Malignant melanoma is one of the most lethal cancers. Nowadays, several anti-melanoma therapies have been employed. However, the poor prognosis and/or the increased toxicity of those treatments clearly demonstrate the requirement of searching for new drugs or novel combined chemotherapeutic protocols, contemplating both effectiveness and low toxicity. Guanosine (Guo) has been used in combination with acriflavina to potentiate the latter's antitumor activity, through still unknown mechanisms. Here, we show that Guo induces B16F10 melanoma cell differentiation, attested by growth arrest, dendrite-like outgrowth and increased melanogenesis, and also reduced motility. A sustained ERK 1/2 phosphorylation was observed after Guo treatment and ERK inhibition led to blockage of dendritogenesis. Intracellular cyclic AMP was not involved in ERK activation, since its levels remained unchanged. Protein kinase C (PKC), in contrast to phospholipase C (PLC), inhibition completely prevented ERK activation. While the classical melanoma differentiation agent forskolin activates cAMP-PKA–Raf–MEK–ERK pathway in B16F10 cells, here we suggest that a cAMP-independent, PKC–ERK axis is involved in Guo-induced B16F10 differentiation. Altogether, our results show that Guo acts as a differentiating agent, with cytostatic rather than cytotoxic properties, leading to a decreased melanoma malignancy. Thus, we propose that Guo may be envisaged in combination with lower doses of conventional anti-melanoma drugs, in an attempt to prevent or diminish their adverse effects.  相似文献   

6.
Our previous discovery of series of pyrazolopyrimidinone based PDE5 inhibitors led to find potent leads but with low aqueous solubility and poor bioavailability, and low selectivity. Now, a new series of same pyrazolopyrimidinone scaffold is designed, synthesized and evaluated for its PDE5 inhibitory potential. In this study, some of the molecules are found more potent and selective PDE5 inhibitors in vitro than sildenafil. The studies revealed that compound 5 is 20 fold selective to PDE5 against PDE6. As PDE6 enzyme is involved in the phototransduction pathway in the retina and creates distortion problem, the selectivity for PDE5 specifically against PDE6 enzyme is preferred for any development candidate and in present study, compound 5 has been found to be devoid of this liability of selectivity issue. Moreover, compound 5 has shown excellent in vivo efficacy in conscious rabbit model, it's almost comparable to sildenafil. The preclinical pharmacology including pharmacokinetic and physicochemical parameter studies were also performed for compound 5, it was found to have good PK properties and other physicochemical parameters. The development of these selective PDE5 inhibitors can further lead to draw strategies for the novel preclinical and/or clinical candidates based on pyrazolopyrimidinone scaffold.  相似文献   

7.
With the aim to develop a specific radioligand for imaging the cyclic nucleotide phosphodiesterase 5 (PDE5) in brain by positron emission tomography (PET), seven new fluorinated inhibitors (39) were synthesized on the basis of a quinoline core. The inhibitory activity for PDE5 together with a panel of other PDEs was determined in vitro and two derivatives were selected for IC50 value determination. The most promising compound 7 (IC50 = 5.92 nM for PDE5A), containing a 3-fluoroazetidine moiety, was further radiolabeled by aliphatic nucleophilic substitution of two different leaving groups (nosylate and tosylate) using [18F]fluoride. The use of the nosylate precursor and tetra-n-butyl ammonium [18F]fluoride ([18F]TBAF) in 3-methyl-3-pentanol combined with the addition of a small amount of water proved to be the best radiolabeling conditions achieving a RCY of 4.9 ± 1.5% in an automated procedure. Preliminary biological investigations in vitro and in vivo were performed to characterize this new PDE5 radioligand. Metabolism studies of [18F]7 in mice revealed a fast metabolic degradation with the formation of radiometabolites which have been detected in the brain.  相似文献   

8.
Continuing research with our earlier finding of sildenafil based analogs in the search of new inhibitors of PDE5 for erectile dysfunction suggested that there is a scope of modifications at N-methylpiperazine ring with hydrophobic region followed by hydrogen bond donor or acceptor region. However, the leads identified earlier had some limitations like poor pharmacokinetic (PK) profile, low aqueous solubility and poor bioavailability. In this direction, a new series of sildenafil based analogs were designed, synthesized and screened for their PDE5 inhibitory activity. In this series compound 18 was found to have excellent in vitro activity with selectivity towards PDE5 isozyme, also the in vivo activity and pharmacokinetic profile was excellent. The cyp inhibition and CaCO2 permeability was also excellent for compound 18 .  相似文献   

9.
In situ melanin assay for MSH using mouse B16 melanoma cells in culture   总被引:3,自引:0,他引:3  
A sensitive in situ melanin assay using cultured mouse B16 melanoma cells is described for structure-activity studies with melanocyte-stimulating hormone (MSH) peptides. B16 Cells were seeded at a density of 2500 cells per well in 96-well microtest tissue culture plates; after 24 h the cells were incubated in the presence of serial dilutions of MSH peptides for 3 to 5 days. The melanin released into the medium of each well was then determined spectrophotometrically at a wavelength of 405 nm using an automatic microplate reader calibrated against synthetic melanin. Studies with alpha-MSH, [Nle4, D-Phe7]-alpha-MSH, [3'-iodo-Tyr2]-alpha-MSH, adrenocorticotropin (ACTH)(1-24), and ACTH(1-39) showed that the peptides had identical intrinsic activities and that the relative potencies were similar to those obtained with a tyrosinase assay. The EC50 of alpha-MSH was 27 pM, i.e., about five- to sevenfold lower than that in the assays for tyrosinase or intracellular melanin. Thus, the new assay represents the most sensitive melanoma cell assay for MSH available to date.  相似文献   

10.
A non-dialyzable extract of fresh spinach leaves exhibited a strong antioxidant activity towards oxidation of linoleic acid and suppressed the melanin formation of a mouse melanoma cell line, B16 melanoma 4A5, without any significant effect on the proliferation of cells.  相似文献   

11.
Native phosphodiesterase-5 (PDE5) homodimer contains distinct non-catalytic cGMP allosteric sites and catalytic sites for cGMP hydrolysis. Purified recombinant PDE5 was activated by pre-incubation with cGMP. Relatively low concentrations of cGMP produced a Native PAGE gel shift of PDE5 from a single band position (lower band) to a band with decreased mobility (upper band); higher concentrations of cGMP produced a band of intermediate mobility (middle band) in addition to the upper band. Two point mutations (G659A and G659P) near the catalytic site that reduced affinity for cGMP substrate retained allosteric cGMP-binding affinity like that of WT PDE5 but displayed cGMP-induced gel shift only to the middle-band position. The upper band could represent a form produced by cGMP binding to the catalytic site, while the middle band could represent a form produced by cGMP binding to the allosteric site. Millimolar cGMP was required for gel shift of PDE5 when added to the pre-incubation before Native PAGE, presumably due to removal of most of the cGMP during electrophoresis, but micromolar cGMP was sufficient for this effect if cGMP was included in the native gel buffer. cGMP-induced gel shift was associated with stimulation of PDE5 catalytic activity, and the rates of onset and reversibility of this effect suggested that it was due to cGMP binding to the allosteric site. Incubation of PDE5 with non-hydrolyzable, catalytic site-specific, substrate analogs such as the inhibitors sildenafil and tadalafil, followed by dilution, did not produce activation of catalytic activity like that obtained with cGMP, although both inhibitors produced a similar gel shift to the upper band as that obtained with cGMP. This implied that occupation of the catalytic site alone can produce a gel shift to the upper band. PDE5 activation or gel shift was reversed by lowering cGMP with dilution followed by at least 1 h of incubation. Such slow reversibility could prolong effects of cGMP on PDE5 in cells after decline of this nucleotide. Reversal was also achieved by Mg++ addition to the pre-incubation mixture to promote cGMP degradation, but Mg++ addition did not reverse the gel shift caused by sildenafil, which is not hydrolyzed by PDE5. Upon extensive dilution, the effect of tadalafil, a potent PDE5 inhibitor, to enhance catalytic-site affinity for this inhibitor was rapidly reversed. Thus, kinetic effect of binding of a high-affinity PDE5 inhibitor to the catalytic site is more readily reversible than that obtained by cGMP binding to the allosteric site. It is concluded that cGMP or PDE5 inhibitor binding to the catalytic site, or ligand binding to both the catalytic site and allosteric site simultaneously, changes PDE5 to a similar physical form; this form is distinct from that produced by cGMP binding to the allosteric site, which activates the enzyme and reverses more slowly.  相似文献   

12.
Lysophosphatidic acid (LPA), a lipid mediator enriched in serum, stimulates cell migration, proliferation and other functions in many cell types. LPA acts on six known G protein-coupled receptors, termed LPA(1-6), showing both overlapping and distinct signaling properties. Here we show that, unexpectedly, LPA and serum almost completely inhibit the transwell migration of B16 melanoma cells, with alkyl-LPA(18:1) being 10-fold more potent than acyl-LPA(18:1). The anti-migratory response to LPA is highly polarized and dependent on protein kinase A (PKA) but not Rho kinase activity; it is associated with a rapid increase in intracellular cAMP levels and PIP3 depletion from the plasma membrane. B16 cells express LPA(2), LPA(5) and LPA(6) receptors. We show that LPA-induced chemorepulsion is mediated specifically by the alkyl-LPA-preferring LPA(5) receptor (GPR92), which raises intracellular cAMP via a noncanonical pathway. Our results define LPA(5) as an anti-migratory receptor and they implicate the cAMP-PKA pathway, along with reduced PIP3 signaling, as an effector of chemorepulsion in B16 melanoma cells.  相似文献   

13.
Novel pyrimidine-5-carboxamide derivatives bearing a 3-chloro-4-methoxybenzylamino group at the 4-position were identified as potent and highly selective phosphodiesterase 5 inhibitors. Among them, we successfully found 10j (avanafil) which exhibited a potent relaxant effect on isolated rabbit cavernosum (EC30 = 2.1 nM) and a high isozyme selectivity.  相似文献   

14.
Hic‐5 is a shuttling protein between the cell membrane and the nucleus which functions as a focal adhesion adaptor protein and a nuclear receptor coactivator. Although several studies have shown its involvement in other types of cancer, the role of Hic‐5 in melanoma is unknown. Herein, we show for the first time that Hic‐5 is expressed in B16‐F1 murine melanoma cells. To determine its function in melanoma cells, we used shRNA‐mediated RNA interference and established stable clones with down‐regulated Hic‐5 expression. These clones had impaired growth and metastatic potential compared with controls in vivo, which correlated with decreased proliferation, migration and invasion in vitro. Moreover, silencing of Hic‐5 expression in B16‐F1 activated RhoA with an amoeboid phenotypic change, indicating that Hic‐5 is a key regulator of B16‐F1 metastasis in the context of Rho‐dependent motility. These results provide new evidence that Hic‐5 is a possible molecular target for treatment of melanoma.  相似文献   

15.
The 11 families of the Class I cyclic nucleotide phosphodiesterases (PDEs) are critical for regulation of cyclic nucleotide signaling. PDE5 (important in regulating vascular smooth muscle contraction) and PDE6 (responsible for regulating visual transduction in vertebrate photoreceptors) are structurally similar but have several functional differences whose structural basis is poorly understood. Using evolutionary trace analysis and structural homology modeling in conjunction with site-directed mutagenesis, we have tested the hypothesis that class-specific differences between PDE5 and PDE6 account for the biochemical and pharmacological differences in the two enzyme families. Replacing human PDE5 residues in the M-loop region of the binding site for the PDE5-selective inhibitor tadalafil (Cialis®) with the corresponding class-specific cone PDE6 residues (P773E, I778V, E780L, F787W, E796V, D803P, L804M, N806D, I813L, S815K) reduces tadalafil binding affinity to levels characteristic of PDE6. These mutations fail to alter vardenafil (Levitra®) affinity for the active site. Class-specific differences in PDE5 versus cone PDE6 that contribute to the accelerated catalytic efficiency of PDE6 were identified but required heterologous expression of full-length PDE5 constructs. Introduction of PDE6 residues into the background of the PDE5 protein sequence often led to loss of catalytic activity and reduced protein solubility, supporting the idea that multiple structural elements of PDE6 are highly susceptible to misfolding during heterologous expression. This work validates the use of PDE5 as a template to identify functional differences between PDE5 and PDE6 that will accelerate efforts to develop the next generation of PDE5-selective inhibitors with fewer adverse side effects resulting from PDE6 inhibition.  相似文献   

16.
In the highly metastatic B16F10 melanoma cell line, activation of the signalling molecules that promote cell proliferation and survival on conventional adhesive culture dishes may also be responsible for the growth and resistance to anoikis of aggregates on a non-adhesive substratum. We have examined the influence of bacterial ADP-ribosyltransferases C3-like exoenzymes, which selectively modify RhoA, B and C proteins and inhibit signal pathways controlled by them. RNA interference [siRNA (small interfering RNA) Akt (also known as protein kinase B)] and a PI3K (phosphoinositide 3-kinase) inhibitor were used to analyse the changes caused by inhibiting the PI3K/Akt pathway. Inhibiting the activation of RhoA, B, C and Akt expression resulted in a decrease of the number of cells cultured in aggregates, and caspase 3 activation. RhoA activation and RhoB and RhoC expression were controlled by Akt, but not RhoA expression. Inhibiting Akt and RhoA reduced the expression of α5 integrin, and inactivated FAK (focal adhesion kinase) in B16F10 cells cultured as aggregates. Thus, inhibiting Rho subfamily proteins and Akt expression inactivates the FAK pathway and induces anoikis in anoikis-resistant cells. The activation of RhoA in melanoma cells can depend on PI3K/Akt activation, suggesting that PI3K/Akt is a suitable target for new therapeutic approaches.  相似文献   

17.
We describe the design, synthesis and profiling of a novel series of PDE5 inhibitors. We take advantage of an alternate projection into the solvent region to identify compounds with excellent potency, selectivity and pharmacokinetic profiles.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号