首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Membrane rafts are cholesterol- and sphingolipid-enriched cell membrane domains, which are ubiquitous in mammals and play an essential role in different cellular functions, including host cell-pathogen interaction. In this work, by using several approaches, we demonstrated the involvement of epithelial cell membrane rafts in adhesion process of the pathogenic fungus Paracoccidioides brasiliensis. This conclusion was supported by the localization of ganglioside GM1, a membrane raft marker, at P. brasiliensis-epithelial cell contact sites, and by the inhibition of this fungus adhesion to host cells pre-treated with cholesterol-extractor (methyl-beta-cyclodextrin, MbetaCD) or -binding (nystatin) agents. In addition, at a very early stage of P. brasiliensis-A549 cell interaction, this fungus promoted activation of Src-family kinases (SFKs) and extracellular signal-regulated kinase 1/2 (ERK1/2) of these epithelial cells. Whereas SFKs were partially responsible for activation of ERK1/2, membrane raft disruption with MbetaCD in A549 cells led to total inhibition of SFK activation. Taking together, these data indicate for the first time that epithelial cell membrane rafts are essential for P. brasiliensis adhesion and activation of cell signaling molecules.  相似文献   

2.
Paracoccidioides brasiliensis is an important fungal pathogen. The disease it causes, paracoccidioidomycosis (PCM), ranges from localized pulmonary infection to systemic processes that endanger the life of the patient. Paracoccidioides brasiliensis adhesion to host tissues contributes to its virulence, but we know relatively little about molecules and the molecular mechanisms governing fungal adhesion to mammalian cells. Triosephosphate isomerase (TPI: EC 5.3.1.1) of P. brasiliensis (PbTPI) is a fungal antigen characterized by microsequencing of peptides. The protein, which is predominantly expressed in the yeast parasitic phase, localizes at the cell wall and in the cytoplasmic compartment. TPI and the respective polyclonal antibody produced against this protein inhibited the interaction of P. brasiliensis to in vitro cultured epithelial cells. TPI binds preferentially to laminin, as determined by peptide inhibition assays. Collectively, these results suggest that TPI is required for interactions between P. brasiliensis and extracellular matrix molecules such as laminin and that this interaction may play an important role in the fungal adherence and invasion of host cells.  相似文献   

3.
Paracoccidioides brasiliensis is a dimorphic fungus known to produce invasive systemic disease in humans. The 43-kDa glycoprotein of P. brasiliensis is the major diagnostic antigen of paracoccidioidomycosis and may act as a virulence factor, since it is a receptor for laminin.Very little is known about early interactions between this fungus and the host cells, so we developed in vitro a model system employing cultured mammalian cells (Vero cells), in order to investigate the factors and virulence mechanisms of P.brasiliensis related to the adhesion and invasion process. We found that there is a permanent interaction after 30 min of contact between the fungus and the cells. The yeasts multiply in the cells for between 5 and 24 h. Different strains of P. brasiliensis were compared, and strain 18 (high virulence) was the most strongly adherent, followed by strain 113 (virulent), 265 (considered of low virulence) and 113M (mutant obtained by ultraviolet radiation, deficient in gp43). P. brasiliensis adhered to the epithelial cells by a narrow tube, while depressions were noticed in the cell surface, suggesting an active cavitation process. An inhibition assay was performed and it was verified that anti-gp43 serum and a pool of sera from individuals with paracoccidioidomycosis were able to inhibit the adhesion of P. brasiliensis to the Vero cells. Glycoprotein 43 (gp43) antiserum abolished 85% of the binding activity of P. brasiliensis. This fungus can also invade the Vero cells, and intraepithelial parasitism could be an escape mechanism in paracoccidioidomycosis.  相似文献   

4.
The ascomycete Paracoccidioides brasiliensis is a human pathogen with a broad distribution in Latin America. The infection process of P. brasiliensis is initiated by aerially dispersed mycelia propagules, which differentiate into the yeast parasitic phase in human lungs. Therefore, the transition to yeast is an initial and fundamental step in the infective process. In order to identify and characterize genes involved in P. brasiliensis transition to yeast, which could be potentially associated to early fungal adaptation to the host, expressed sequence tags (ESTs) were examined from a cDNA library, prepared from mycelia ongoing differentiation to yeast cells. In this study, it is presented a screen for a set of genes related to protein synthesis and to protein folding/modification/destination expressed during morphogenesis from mycelium to yeast. Our analysis revealed 43 genes that are induced during the early transition process, when compared to mycelia. In addition, eight novel genes related to those processes were described in the P. brasiliensis transition cDNA library. The types of induced and novel genes in the transition cDNA library highlight some metabolic aspects, such as putative increase in protein synthesis, in protein glycosylation, and in the control of protein folding that seem to be relevant to the fungal transition to the parasitic phase.  相似文献   

5.
For many protozoan parasites, one of the first events in the process of infection is attachment to the surface of host cells. This adhesion phase usually involves ligand-receptor interactions, and has stimulated interest in the biochemical characterization of those host cell and parasite surface components involved. In this article, Ali Ouaissi discusses the strategy employed by pathogens such as Trypanosoma cruzi, Trichomonas, Leishmania and Treponema pallidum, in binding to their host cells' fibronectin receptors. Two systems appear available - to bind to the dimeric cell surface fibronectin through the Arginine-Glycine-Aspartic acid (RGD) sequence that is not occupied by the host cell surface receptors, or to present a surface antigen representing a 'fibronectin-like' molecule containing the RGD sequence directly to the host cell fibronectin receptors.  相似文献   

6.
Paracoccidioides brasiliensis components interact with host cells and can influence the pathogenesis of paracoccidioidomycosis (PCM). Among the components released by P. brasiliensis, gp 43 and a heavily glycosylated antigen with MM>160 kDa are the most recognized by serum antibodies from patients with PCM. In order to isolate the high MM glycoconjugate, we carried out affinity chromatography of a crude exoantigen preparation on immobilized jacalin. The bound fraction (JBE, jacalin binding exoantigen) consisted of a major antigen of high MM and frequently of an additional 70-kDa minor protein. This protein, designated paracoccin, exhibited selective binding to immobilized GlcNAc, a property that was used for its purification. The structural data of paracoccin obtained by mass spectrometry of tryptic peptides did not match any known protein. Anti-paracoccin serum localized the lectin on the surface of P. brasiliensis yeasts, especially in the budding regions. Paracoccin was able to interact with laminin in a dose-dependent manner. This interaction was inhibited by GlcNAc, followed by D-glucose and D-mannose, but not by D-galactose, N-acetyl-galactosamine or L-fucose. Interestingly, paracoccin induced both resident and elicited mouse peritoneal cavity macrophages to release high and persistent levels of TNF-alpha in vitro, a fact that was associated with high nitric oxide production in elicited cells. Because binding to laminin can favor yeast adhesion and invasion of host tissues, and overproduction of NO has been associated with suppression of cell immunity, paracoccin is suggested to play an important role in PCM pathogenesis.  相似文献   

7.
Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis, is a dimorphic fungus which is found as mycelia (M) at 26 degrees C and as yeasts (Y) at 37 degrees C, or after the invasion of host tissues. Although the dimorphic transition in P. brasiliensis and other dimorphic fungi is an essential step in the establishment of infection, the molecular events regulating this process are yet poorly understood. Since the differential gene expression is a well-known mechanism which plays a central role in the dimorphic transition as well as in other biological process, in this work we describe the identification and characterization of two differentially expressed P. brasiliensis hydrophobin cDNAs (Pbhyd1 and Pbhyd2). Hydrophobins are small hydrophobic proteins related to a variety of important functions in fungal biology, including cell growth, development, infection, and virulence. These two hydrophobin genes are present as single copy in P. brasiliensis genome and Northern blot analysis revealed that both mRNAs are mycelium-specific and highly accumulated during the first 24 h of M to Y transition.  相似文献   

8.
Bacteriophage Mu, which has a contractile tail, is one of the most famous genus of Myoviridae. It has a wide host range and is thought to contribute to horizontal gene transfer. The Myoviridae infection process is initiated by adhesion to the host surface. The phage then penetrates the host cell membrane using its tail to inject its genetic material into the host. In this penetration process, Myoviridae phages are proposed to puncture the membrane of the host cell using a central spike located beneath its baseplate. The central spike of the Mu phage is thought to be composed of gene 45 product (gp45), which has a significant sequence homology with the central spike of P2 phage (gpV). We determined the crystal structure of shortened Mu gp45Δ1-91 (Arg92–Gln197) at 1.5 Å resolution and showed that Mu gp45 is a needlelike structure that punctures the membrane. The apex of Mu gp45 and that of P2 gpV contained iron, chloride, and calcium ions. Although the C-terminal domain of Mu gp45 was sufficient for binding to the E. coli membrane, a mutant D188A, in which the Asp amino acid residue that coordinates the calcium ion was replaced by Ala, did not exhibit a propensity to bind to the membrane. Therefore, we concluded that calcium ion played an important role in interaction with the host cell membrane.  相似文献   

9.
Adhesion to extracellular matrix (ECM) proteins plays a crucial role in invasive fungal diseases. ECM proteins bind to the surface of Paracoccidioides brasiliensis yeast cells in distinct qualitative patterns. Extracts from Pb18 strain, before (18a) and after animal inoculation (18b), exhibited differential adhesion to ECM components. Pb18b extract had a higher capacity for binding to ECM components than Pb18a. Laminin was the most adherent component for both samples, followed by type I collagen, fibronectin, and type IV collagen for Pb18b. A remarkable difference was seen in the interaction of the two extracts with fibronectin and their fragments. Pb18b extract interacted significantly with the 120-kDa fragment. Ligand affinity binding assays showed that type I collagen recognized two components (47 and 80kDa) and gp43 bound both fibronectin and laminin. The peptide 1 (NLGRDAKRHL) from gp43, with several positively charged amino acids, contributed most to the adhesion of P. brasiliensis to Vero cells. Synthetic peptides derived from peptide YIGRS of laminin or from RGD of both laminin and fibronectin showed the greatest inhibition of adhesion of gp43 to Vero cells. In conclusion, this work provided new molecular details on the interaction between P. brasiliensis and ECM components.  相似文献   

10.
11.
A proteomic approach was used to identify a 39 kDa antigen of Paracoccidioides brasiliensis. Amino acid sequences of the N-terminal and of endoproteinase Lys-C digested peptides revealed the protein to be a fructose 1,6-biphosphate aldolase (FBA) Class II of P. brasiliensis. Two cDNA homologues, Pbfba1 and Pbfba2, were cloned and characterized. Pbfba1 encoded a predicted polypeptide of 360 amino acids that was highly homologous in the primary structure to the same enzyme from fungi and bacteria. The other DNA, Pbfba2, encoded a polypeptide predicted to be 363 amino acids. The sequence of Pbfba2 differed significantly from Pbfba1. Phylogenetic and molecular analysis supports the concept of gene duplication for FBAs in P. brasiliensis, constituting a two-member family. Expression analysis demonstrated differential expression for both fbas genes in P. brasiliensis cells.  相似文献   

12.
We screened an expression library of the yeast form of Paracoccidioides brasiliensis with a pool of human sera that was pre-adsorbed with mycelium, from patients with paracoccidioidomycosis (PCM). A sequence (PbYmnt) was obtained and characterized. A genomic clone was obtained by PCR of P. brasiliensis total DNA. The sequence contained a single open reading frame (ORF) encoding a protein of 357 amino acid residues, with a molecular mass of 39.78 kDa. The deduced amino acid sequence exhibited identity to mannosyl- and glycosyltransferases from several sources. A DXD motif was present in the translated gene and this sequence is characteristic of the glycosyltransferases. Hydropathy analysis revealed a single transmembrane region near the amino terminus of the molecule that suggested a type II membrane protein. The PbYmnt was expressed preferentially in the yeast parasitic phase. The accession number of the nucleotide sequence of PbYmnt and its flanking regions is AF374353. A recombinant protein was generated in Escherichia coli. Our data suggest that PbYmnt encodes one member of a glycosyltransferase family of proteins and that our strategy was useful in the isolation of differentially expressed genes.  相似文献   

13.
Transglutaminase 2 (TG2) is an autoantigen in celiac disease (CD) and it has multiple biologic functions including involvement in cell adhesion through interactions with integrins, fibronectin (FN), and heparan sulfate proteoglycans. We aimed to delineate the heparin‐binding regions of human TG2 by studying binding kinetics of the predicted heparin‐binding peptides using surface plasmon resonance method. In addition, we characterized immunogenicity of the TG2 peptides and their effect on cell adhesion. The high‐affinity binding of human TG2 to the immobilized heparin was observed, and two TG2 peptides, P1 (amino acids 202–215) and P2 (261–274), were found to bind heparin. The amino acid sequences corresponding to the heparin‐binding peptides were located close to each other on the surface of the TG2 molecule as part of the α‐helical structures. The heparin‐binding peptides displayed increased immunoreactivity against serum IgA of CD patients compared with other TG2 peptides. The cell adhesion reducing effect of the peptide P2 was revealed in Caco‐2 intestinal epithelial cell attachment to the FN and FN‐TG2 coated surfaces. We propose that TG2 amino acid sequences 202–215 and 261–274 could be involved in binding of TG2 to cell surface heparan sulfates. High immunoreactivity of the corresponding heparin‐binding peptides of TG2 with CD patient's IgA supports the previously described role of anti‐TG2 autoantibodies interfering with this interaction. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Paracoccidioides brasiliensis (Pb) yeast cells can enter mammalian cells and probably manipulate the host cell environment to favor their own growth and survival. We studied the uptake of strain Pb 18 into A549 lung and Vero epithelial cells, with an emphasis on the repercussions in the cytoskeleton and the apoptosis of host cells. Cytoskeleton components of the host cells, such as actin and tubulin, were involved in the P. brasiliensis invasion process. Cytochalasin D and colchicine treatment substantially reduced invasion, indicating the functional participation of microfilaments (MFs) and microtubules (MTs) in this mechanism. Cytokeratin could also play a role in the P. brasiliensis interaction with the host. Gp43 was recognized by anti-actin and anti-cytokeratin antibodies, but not by anti-tubulin. The apoptosis induced by this fungus in infected epithelial cells was demonstrated by various techniques: TUNEL, DNA fragmentation and Bak and Bcl-2 immunocytochemical expression. DNA fragmentation was observed in infected cells but not in uninfected ones, by both TUNEL and gel electrophoresis methods. Moreover, Bcl-2 and Bak did not show any differences until 24 h after infection of cells, suggesting a competitive mechanism that allows persistence of infection. Overexpression of Bak was observed after 48 h, indicating the loss of competition between death and survival signals. In conclusion, the mechanisms of invasion of host cells, persistence within them, and the subsequent induction of apoptosis of such cells may explain the efficient dissemination of P. brasiliensis.  相似文献   

15.
G J Cole  R Akeson 《Neuron》1989,2(2):1157-1165
The neural cell adhesion molecule (N-CAM) plays an integral role in cell interactions during neural development, with the binding of heparan sulfate proteoglycan to the amino-terminal region of N-CAM being required for N-CAM function. In the present study we have used synthetic peptides (HBD-1 and HBD-2), derived from the primary amino acid sequence of rat N-CAM, to identify the region of N-CAM that binds heparan sulfate. The 28 amino acid HBD-1 synthetic peptide was shown to bind both [3H]heparin and dissociated retinal cells. Retinal cells also attach to a substratum of HBD-2 peptide, but fail to bind to a control peptide containing a scrambled amino acid sequence of HBD-2. The HBD-2 peptide also inhibits retinal cell adhesion to N-CAM, demonstrating the physiological importance of the amino acid sequence encoded by the HBD peptide. These data therefore permit the localization of a heparin binding domain to a 17 amino acid region of immunoglobulin-like loop 2.  相似文献   

16.
Paracoccidioides brasiliensis is a well-characterized pathogen of humans. To identify proteins involved in the fungus-host interaction, P. brasiliensis yeast proteins were separated by liquid isoelectric focusing, and fractions were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis. Immunoreactive bands were detected with pooled sera of patients with P. brasiliensis infection. A protein species with a molecular mass of 45 kDa was subsequently purified to homogeneity by preparative gel electrophoresis. The amino acid sequence of four endoproteinase Lys-C-digested peptides indicated that the protein was a formamidase (FMD) (E.C. 3.5.1.49) of P. brasiliensis. The complete cDNA and a genomic clone (Pbfmd) encoding the isolated FMD were isolated. An open reading frame predicted a 415-amino acid protein. The sequence contained each of the peptide sequences obtained from amino acid sequencing. The Pbfmd gene contained five exons interrupted by four introns. Northern and Southern blot analysis suggested that there is one copy of the gene in P. brasiliensis and that it is preferentially expressed in mycelium. The complete coding cDNA was expressed in Escherichia coli to produce a recombinant fusion protein with glutathione S-transferase (GST). The purified recombinant protein was recognized by sera of patients with proven paracoccidioidomycosis and not by sera of healthy individuals. The recombinant 45-kDa protein was shown to be catalytically active; FMD activity was detected in P. brasiliensis yeast and mycelium.  相似文献   

17.
Microsporidia are spore-forming fungal pathogens that require the intracellular environment of host cells for propagation. We have shown that spores of the genus Encephalitozoon adhere to host cell surface glycosaminoglycans (GAGs) in vitro and that this adherence serves to modulate the infection process. In this study, a spore wall protein (EnP1; Encephalitozoon cuniculi ECU01_0820) from E. cuniculi and Encephalitozoon intestinalis is found to interact with the host cell surface. Analysis of the amino acid sequence reveals multiple heparin-binding motifs, which are known to interact with extracellular matrices. Both recombinant EnP1 protein and purified EnP1 antibody inhibit spore adherence, resulting in decreased host cell infection. Furthermore, when the N-terminal heparin-binding motif is deleted by site-directed mutagenesis, inhibition of adherence is ablated. Our transmission immunoelectron microscopy reveals that EnP1 is embedded in the microsporidial endospore and exospore and is found in high abundance in the polar sac/anchoring disk region, an area from which the everting polar tube is released. Finally, by using a host cell binding assay, EnP1 is shown to bind host cell surfaces but not to those that lack surface GAGs. Collectively, these data show that given its expression in both the endospore and the exospore, EnP1 is a microsporidian cell wall protein that may function both in a structural capacity and in modulating in vitro host cell adherence and infection.  相似文献   

18.
In fungi, chitin synthases have been classified into five classes according to differences in regions of high sequence conservation. The current investigation was initiated to examine the causes for the polymorphism patterns found in a class II chitin synthase gene (chs2) of Paracoccidioides brasiliensis, in an attempt to determine the evolutionary forces affecting the chitin synthesis metabolic pathway. Neutrality tests were applied to the chs2 sequences exhibited by P. brasiliensis species complex. According to these tests and based on non-synonymous differences, P. brasiliensis data rejected the null hypothesis for a pure drift mutational process owing to a large excess of unique polymorphisms. In contrast, the synonymous and intron site differences did not reject the null hypothesis. This pattern appears consistent with weak selection against most amino acid changes, in which the effect of background selection was not detectable at synonymous nor at intron sites.  相似文献   

19.
Fap1, a fimbriae-associated protein, is involved in fimbriae assembly and adhesion of Streptococcus parasanguis FW213 (Wu et al., 1998). In this study, the sequence of the fap1 gene was resolved using a primer island transposition system. Sequence analysis indicated that fap1 was composed of 7659 nucleotides. The predicted Fap1 protein contains an unusually long signal sequence (50 amino acid residues), a cell wall sorting signal and two repeat regions. Repeat regions I and II have a similar dipeptide composition (E/V/I)S, composed of 28 and 1000 repeats respectively. The two regions combined accounted for 80% of the Fap1 coding region. The experimental amino acid composition and isoelectric point (pI) of Fap1 were similar to that predicted from the deduced Fap1 protein. Results of Northern analyses revealed that the fap1 open reading frame (ORF) was transcribed as a 7.8 kb monocistronic message. Insertional inactivation at the 3' end, downstream of the fap1 ORF, did not affect Fap1, fimbrial expression or bacterial adhesion. Insertional inactivation of fap1 immediately upstream of the repeat region II abolished expression of Fap1 and fimbriae, and was concurrent with a diminution in adhesion of FW213. Inactivation of the cell wall sorting signal of fap1 also eliminated long fimbrial formation and reduced the ability of FW213 to bind to SHA. Fap1 was no longer anchored on the cell surface. Large quantities of truncated Fap1 were found in the growth medium instead. These results suggest that the fap1 ORF alone is sufficient to support Fap1 expression and adhesion, and demonstrate that anchorage of Fap1 on the cell surface is required for long fimbriae formation. These data further document the role of long fimbriae in adhesion of S. parasanguis FW213 to SHA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号