首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four lactobacilli strains (Lactobacillus bulgaricus, Lactobacillus acidophilus, Lactobacilus casei and Lactobacillus reuteri) were grown in MRS broth and three lactococci strains (Streptococcus thermophilus, Lactococcus lactis subsp. Lactis and Lactococcus lactis subsp. lactis biovar. diacetilactis) were grown in M17 broth. L. reuteri and S. thermophilus were chosen on the basis of the best mean beta-galactosidase activity of 10.44 and 10.01 U/ml respectively, for further studies on permeate-based medium. The maximum production of beta-galactosidase by L. reuteri was achieved at lactose concentration of 6%, initial pH 5.0-7.5, ammonium phosphate as nitrogen source at a concentration of 0.66 g N/L and incubation temperature at 30 degrees C/24 hrs to give 6.31 U/ml. While in case of S. thermophilus, maximum beta-galactosidase production was achieved at 10% lactose concentration of permeate medium, supplemented with phosphate buffer ratio of 0.5:0.5 (KH2PO4:K2HPO4, g/L), at initial pH 6.0-6.5, ammonium phosphate (0.66g N/L) as nitrogen source and incubation temperature 35 degrees C for 24 hrs to give 7.85 U/ml.  相似文献   

2.
A procedure was developed to enumerate selectively Lactobacillus casei populations in yoghurt-type fermented milks that can also contain strains of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus and Bifidobacterium infantis. Commercial LBS agar was acidified to pH 5.4, and the plates were incubated at 15°C for 14 days under anaerobic conditions. Acidification prevented the development of streptococci, and incubation at 15°C limited the development of the lactobacilli and the bifidobacteria. L. casei formed colonies on HHD medium which were different from those obtained with L. bulgaricus. Counts of L. casei on HHD confirmed results obtained on LBS - pH 5.4 medium and incubated at 15°C. L. casei did not form colonies on M17, nor did L. acidophilus or L. bulgaricus.  相似文献   

3.
One hundred and twenty (120) strains of lactic acid bacteria (LAB) were enumerated and isolated from raw dromedary milk in Morocco using various cultured media. Strains isolated were characterized by phenotypic, physiological and biochemical properties. Results showed that high counts of LAB were found. Presumptive lactobacilli counts ranged from 2.5x10(2) to 6x10(7)cfu/ml, presumptive lactococci levels varied from 5x10(2) to 6x10(7)cfu/ml, presumptive streptococci counts varied from 4.2x10(2) to 8x10(7)cfu/ml, presumptive leuconostoc levels ranged from 5.4x10(2) to 5.4x10(7)cfu/ml. Results showed also that Lactobacillus and Lactococcus were the predominant genera with 37.5% and 25.8%, respectively. The dominated species found were Lactococcus lactis subsp. lactis (17.5%), Lactobacillus helveticus (10%), Streptococcus salivarius subsp. thermophilus (9.20%), Lactobacillus casei subsp. casei (5.80%) and Lactobacillus plantarum (5%). This is the first report on the characterization of LAB strains isolated from the one humped camel milk produced in Morocco.  相似文献   

4.
A selective medium (LC agar) was developed for enumeration of Lactobacillus casei populations from commercial yogurts and fermented milk drinks that may contain strains of yogurt bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), probiotic bacteria (Lactobacillus acidophilus and bifidobacteria) and L. casei. Appropriate dilutions were pour-plated in specially formulated LC agar acidified to pH 5.1 and the plates incubated at 27°C for 72 to 96 h under anaerobic conditions. Growth of S. thermophilus was prevented by adjusting pH to 5.1. L. delbrueckii ssp. bulgaricus did not ferment ribose as the carbon source, as a result the organisms did not form colonies. L. acidophilus formed colonies on MRS-ribose agar; however, this organism did not grow in the specially formulated LC agar containing ribose. Similarly, Bifidobacterium spp. did not form colonies in LC agar. L. casei formed colonies on LC agar. © Rapid Science Ltd. 1998  相似文献   

5.
Production of probiotic cabbage juice by lactic acid bacteria   总被引:3,自引:0,他引:3  
Research was undertaken to determine the suitability of cabbage as a raw material for production of probiotic cabbage juice by lactic acid bacteria (Lactobacillus plantarum C3, Lactobacillus casei A4, and Lactobacillus delbrueckii D7). Cabbage juice was inoculated with a 24-h-old lactic culture and incubated at 30 degrees C. Changes in pH, acidity, sugar content, and viable cell counts during fermentation under controlled conditions were monitored. L. casei, L. delbrueckii, and L. plantarum grew well on cabbage juice and reached nearly 10x10(8) CFU/mL after 48 h of fermentation at 30 degrees C. L. casei, however, produced a smaller amount of titratable acidity expressed as lactic acid than L. delbrueckii or L. plantarum. After 4 weeks of cold storage at 4 degrees C, the viable cell counts of L. plantarum and L. delbrueckii were still 4.1x10(7) and 4.5x10(5) mL(-1), respectively. L. casei did not survive the low pH and high acidity conditions in fermented cabbage juice and lost cell viability completely after 2 weeks of cold storage at 4 degrees C. Fermented cabbage juice could serve as a healthy beverage for vegetarians and lactose-allergic consumers.  相似文献   

6.
Evidence for extrachromosomal elements in Lactobacillus.   总被引:16,自引:2,他引:16       下载免费PDF全文
Three strains of lactobacilli, Lactobacillus casei subsp. casei 64H, L. casei subsp. rhamnosus OC91, and L. coryniformis M34, were examined for the presence of plasmids. Plasmids of molecular weights of 23 x 10(6) and 16 x 10(6) were found in the first two strains respectively. This represents the first evidence for plasmids in lactobacilli; their function is not presently known.  相似文献   

7.
Effective diffusion coefficients (De) of lactose in kappa-carrageenan (2.75% wt/wt)/locust bean gum (0.25% wt/wt) (LBG) gel beads (1.5-2.0-mm diameter)with or without entrapped lactic acid bacteria (LAB) were determined at 40 degrees C. The effects of lactose concentration, bacteria strain (Streptococcus salivarius subsp. thermophilus and Lactobacillus casei subsp. casei) and cell content at various steps of the fermentation process (after immobilization, pre-incubation of the beads and successive fermentations) were measured on De as a first step for process modelling. Results were obtained from transiend concentration changes n well-stirred lactose solutions in which the beads were suspended. A mathematical model of unsteady-state diffusion in a sphere was used, and De was obtained from the best fit of the experimental data. Diffusivity of lactose in cell-tree beads was significantly lower than in pure water mainly because of the obstruction effect of the polymer chains and the hydration region. Furthermore, effective diffusivity and equilibrium partition factor were independent of lactose concentration in the range from 12.5 to 50 g/L. No significant difference was found for De (effective diffusivity) and Kp (partition) coefficients between beads entrapping S. thermophilus (approximately 5 x 10(9) CFU/mL) and cell-free beads. On the other hand higher cell counts obtained with L. casei (close to 1.8 x 10(11) CFU/mL) increased mass transfer resistance resulting in lower effective diffusivities and Kp. Finally, the effects of the type of bacteria and their distribution in the beads on the diffusivity were also discussed.  相似文献   

8.
The chimeric plasmid pBN183 was first constructed in Escherichia coli by ligating the BamHI-digested E. coli plasmid pBR322 and a Bg/II-linearized streptococcal plasmid, pNZ18. The pBN183 transformed E. coli to ApR at a frequency of (8.2 +/- 1.2) x 10(5) colony forming units (CFU)/microgram DNA. Electrotransformation of Streptococcus thermophilus with pBN183 yielded CmR, ApS clones at a frequency of (2.6 +/- 0.3) x 10(1) CFU/microgram DNA. Plasmid screening with pBN183-transformed S. thermophilus clones revealed that ca. 70% of these transformants contained deleted plasmids. Plasmid pBN183A, a pBN183 deletion mutant lacking one copy of a tandemly arranged, highly homologous DNA sequence, was isolated for further study. It transformed E. coli to ApR and S. thermophilus to CmR with frequencies of (4.8 +/- 0.1) x 10(5) and (8.1 +/- 0.2) x 10(2) CFU/microgram DNA, respectively. Screening of S. thermophilus transformants did not show the presence of deleted plasmids. Based on the structure of pBN183A, a new shuttle plasmid, pDBN183, was constructed from pBN183 by removal of the small (1.2 kb) Sa/I fragment. Transformation frequencies of pDBN183 were (5.0 +/- 1.3) x 10(5) and (4.6 +/- 0.2) x 10(2) CFU/microgram DNA with E. coli and S. thermophilus, respectively. In contrast to the parent pBN183, only 17% of the pDBN183-transformed S. thermophilus contained deleted plasmids. Plasmid copy numbers of the three vectors in E. coli were estimated at 17-18 per chromosome. The three plasmids conferred ApR and CmR to E. coli, but only CmR to S. thermophilus. The insertion of a Streptomyces cholesterol oxidase gene (choA) into pDBN183 did not affect the plasmid's stability in Lactobacillus casei, but resulted in deletion of the recombinant DNA in S. thermophilus.  相似文献   

9.
A gene encoding an O-acetyl-L-serine sulfhydrylase (cysK) was cloned from Lactobacillus casei FAM18110 and expressed in Escherichia coli. The purified recombinant enzyme synthesized cysteine from sulfide and O-acetyl-L-serine at pH 5.5 and pH 7.4. At pH 7.4, the apparent K(M) for O-acetyl-L-serine (OAS) and sulfide were 0.6 and 6.7 mM, respectively. Furthermore, the enzyme showed cysteine desulfurization activity in the presence of dithiothreitol at pH 7.5, but not at pH 5.5. The apparent K(M) for L-cysteine was 0.7 mM. The synthesis of cystathionine from homocysteine and serine or OAS was not observed. When expressed in a cysMK mutant of Escherichia coli, the cloned gene complemented the cysteine auxotrophy of the mutant. These findings suggested that the gene product is mainly involved in cysteine biosynthesis in L. casei. Quantitative real-time PCR and a mass spectrometric assay based on selected reaction monitoring demonstrated that L. casei FAM18110 is constitutively overexpressing cysK.  相似文献   

10.
Lactic acid bacteria (LAB) are generally sensitive to H2O2, a compound that they can paradoxically produce themselves, as is the case for Lactobacillus bulgaricus. Lactobacillus plantarum ATCC 14431 is one of the very few LAB strains able to degrade H2O2 through the action of a nonheme, manganese-dependent catalase (hereafter called MnKat). The MnKat gene was expressed in three catalase-deficient LAB species: L. bulgaricus ATCC 11842, Lactobacillus casei BL23, and Lactococcus lactis MG1363. While the protein could be detected in all heterologous hosts, enzyme activity was observed only in L. casei. This is probably due to the differences in the Mn contents of the cells, which are reportedly similar in L. plantarum and L. casei but at least 10- and 100-fold lower in Lactococcus lactis and L. bulgaricus, respectively. The expression of the MnKat gene in L. casei conferred enhanced oxidative stress resistance, as measured by an increase in the survival rate after exposure to H2O2, and improved long-term survival in aerated cultures. In mixtures of L. casei producing MnKat and L. bulgaricus, L. casei can eliminate H2O2 from the culture medium, thereby protecting both L. casei and L. bulgaricus from its deleterious effects.  相似文献   

11.
A primer design strategy named CODEHOP (consensus-degenerate hybrid oligonucleotide primer) for amplification of distantly related sequences was used to detect the priming glycosyltransferase (GT) gene in strains of the Lactobacillus casei group. Each hybrid primer consisted of a short 3' degenerate core based on four highly conserved amino acids and a longer 5' consensus clamp region based on six sequences of the priming GT gene products from exopolysaccharide (EPS)-producing bacteria. The hybrid primers were used to detect the priming GT gene of 44 commercial isolates and reference strains of Lactobacillus rhamnosus, L. casei, Lactobacillus zeae, and Streptococcus thermophilus. The priming GT gene was detected in the genome of both non-EPS-producing (EPS(-)) and EPS-producing (EPS(+)) strains of L. rhamnosus. The sequences of the cloned PCR products were similar to those of the priming GT gene of various gram-negative and gram-positive EPS(+) bacteria. Specific primers designed from the L. rhamnosus RW-9595M GT gene were used to sequence the end of the priming GT gene in selected EPS(+) strains of L. rhamnosus. Phylogenetic analysis revealed that Lactobacillus spp. form a distinctive group apart from other lactic acid bacteria for which GT genes have been characterized to date. Moreover, the sequences show a divergence existing among strains of L. rhamnosus with respect to the terminal region of the priming GT gene. Thus, the PCR approach with consensus-degenerate hybrid primers designed with CODEHOP is a practical approach for the detection of similar genes containing conserved motifs in different bacterial genomes.  相似文献   

12.
To date, there is significant controversy as to the survival of yogurt bacteria (namely, Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) after passage through the human gastrointestinal tract. Survival of both bacterial species in human feces was investigated by culture on selective media. Out of 39 samples recovered from 13 healthy subjects over a 12-day period of fresh yogurt intake, 32 and 37 samples contained viable S. thermophilus (median value of 6.3 x 10(4) CFU g(-1) of feces) and L. delbrueckii (median value of 7.2 x 10(4)CFU g(-1) of feces), respectively. The results of the present study indicate that substantial numbers of yogurt bacteria can survive human gastrointestinal transit.  相似文献   

13.
The trans -sulfuration pathways allow the interconversion of cysteine and methionine with the intermediary formation of cystathionine and homocysteine. The genome database of Lactobacillus casei ATCC 334 provides evidence that this species cannot synthesize cysteine from methionine via the trans -sulfuration pathway. However, several L. casei strains use methionine as the sole sulfur source, which implies that these strains can convert methionine to cysteine. Cystathionine synthases and lyases play a crucial role in the trans -sulfuration pathway. By applying proteomic techniques, we have identified a protein in cell-free extracts of L. casei , which showed high homology to a gene product encoded in the genome of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus and Lactobacillus helveticus but not in the genome of L. casei ATCC 334. The presence of the gene was only found in strains able to grow on methionine as the sole sulfur source. Moreover, two gene variants were identified. Both gene variants were cloned and expressed heterologously in Escherichia coli . The recombinant enzymes exhibited cystathionine lyase activity in vitro and also cleaved cysteine, homocysteine and methionine releasing volatile sulfur compounds.  相似文献   

14.
Lactobacillus casei ATCC 4646 and Actinomyces viscosus OMZ105E were found to differ markedly in acid tolerance. For example, pH profiles for glycolysis of intact cells in dense suspensions indicated that glycolysis by L. casei had an optimal pH of about 6.0 and that glucose degradation was reduced by 50% at a pH of 4.2. Comparable values for A. viscosus cells were at pHs of about 7.0 and 5.6. The difference in acid tolerance appeared to depend mainly on membrane physiology, and the addition of 40 microM gramicidin to cell suspensions increased the sensitivity of the glycolytic system by as much as 1.5 pH units for L. casei and up to 0.5 pH unit for A. viscosus. L. casei cells were inherently somewhat more resistant to severe acid damage than were A. viscosus cells, in that Mg release from L. casei cells in medium with a pH of 3.0 occurred only after a lag of some 4 h, compared with rapid release from A. viscosus cells. However, the major differences pertinent to the physiology of the organisms appeared to be related to proton-translocating ATPases. Isolated membranes of L. casei had about 3.29 U of ATPase per mg of protein, compared with only about 0.06 U per mg of protein for those of A. viscosus. Moreover, the ATPase of L. casei had a pH optimum for hydrolytic activity of about 5, compared with an optimal pH of about 7 for that of A. viscosus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Ribotyping ofLactobacillus casei group strains isolated from dairy products   总被引:1,自引:0,他引:1  
A series of lactobacilli isolated from dairy products were characterized using biotyping and ribotyping with EcoRI and HindIII restriction enzymes. Biotyping assigned 14 strains as Lactobacillus casei, 6 strains as Lactobacillus paracasei subsp. paracasei and 12 as Lactobacillus rhamnosus. The obtained ribotype patterns separated all analyzed strains into two clearly distinguished groups corresponding to L. rhamnosus and L. casei/L. paracasei subsp. paracasei. The HindIII ribotypes of individual strains representing these two groups were visually very similar. In contrast, EcoRI ribotyping revealed high intraspecies variability. All ribotypes of L. casei and L. paracasei subsp. paracasei dairy strains were very close and some strains even shared identical ribotype profiles. The type strains L. casei CCM 7088T (= ATCC 393T) and Lactobacillus zeae CCM 7069T revealing similar ribopatterns formed a separate subcluster using both restriction enzymes. In contrast, the ribotype profile of L. casei CCM 7089 (= ATCC 334) was very close to ribopatterns obtained from the dairy strains. These results support synonymy of L. casei and L. paracasei species revealed by other studies as well as reclassification of the type strain L. casei CCM 7088T as L. zeae and designation of L. casei CCM 7089 as the neotype strain.  相似文献   

16.
Lactobacillus casei ATCC 4646 and Actinomyces viscosus OMZ105E were found to differ markedly in acid tolerance. For example, pH profiles for glycolysis of intact cells in dense suspensions indicated that glycolysis by L. casei had an optimal pH of about 6.0 and that glucose degradation was reduced by 50% at a pH of 4.2. Comparable values for A. viscosus cells were at pHs of about 7.0 and 5.6. The difference in acid tolerance appeared to depend mainly on membrane physiology, and the addition of 40 microM gramicidin to cell suspensions increased the sensitivity of the glycolytic system by as much as 1.5 pH units for L. casei and up to 0.5 pH unit for A. viscosus. L. casei cells were inherently somewhat more resistant to severe acid damage than were A. viscosus cells, in that Mg release from L. casei cells in medium with a pH of 3.0 occurred only after a lag of some 4 h, compared with rapid release from A. viscosus cells. However, the major differences pertinent to the physiology of the organisms appeared to be related to proton-translocating ATPases. Isolated membranes of L. casei had about 3.29 U of ATPase per mg of protein, compared with only about 0.06 U per mg of protein for those of A. viscosus. Moreover, the ATPase of L. casei had a pH optimum for hydrolytic activity of about 5, compared with an optimal pH of about 7 for that of A. viscosus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
研究了益生乳酸菌干酪乳杆菌Zhang(Lactobacillus casei Zhang)和植物乳杆菌P8(Lactobacillus planta-rum P8)对全价饲料pH及微生物类群变化的影响。分别将L.casei Zhang、L.plantarum P8单一菌种及复合菌种(11)以6.30 lg cfu/g的接种总量发酵全价饲料,测定25℃10 d发酵期间全价饲料pH和微生物类群的变化,应用选择培养基测定发酵饲料中的乳酸菌及杂菌(酵母菌、霉菌、大肠菌群、芽胞杆菌和梭状芽胞杆菌)的动态变化,应用RT-PCR技术测定试验组中的L.casei Zhang和L.plantarum P8的动态变化。结果显示,试验组pH下降显著,发酵10 d时,L.casei Zhang、L.plantarum P8单一菌种和复合菌种发酵饲料的pH分别为4.23、4.24和4.22,显著低于对照组(P0.05);L.casei Zhang、L.plantarum P8单一菌种和复合菌种发酵饲料中的L.casei Zhang、L.plantarum P8活菌数分别为8.91、8.89、6.58和8.69 lg cfu/g。发酵期间,试验组中酵母菌、霉菌、大肠菌群、芽胞杆菌及梭状芽胞杆菌活菌数显著低于对照组(P0.05),其中L.plantarum P8单一菌种发酵和复合菌种发酵对杂菌抑制效果显著优于L.casei Zhang单一菌种发酵(P0.05)。结果表明,全价饲料经L.casei Zhang、L.plantarum P8发酵可以显著降低其pH,抑制其中杂菌的生长,同时L.casei Zhang、L.plantarum P8在饲料中具有良好的稳定性。  相似文献   

18.
beta-D-Phosphogalactoside galactohydrolase (beta-Pgal) was examined in a number of lactic streptococci by use of the chromogenic substrate o-nitrophenyl-beta-D-galactopyranoside-6-phosphate. Specific activity of beta-Pgal ranged from 0.563 units/mg of protein in Streptococcus lactis UN, to 0.120 in S. diacetilactics 18-16. Essentially no beta-D-galactoside galactohydrolase (beta-gal) was found in these organisms when o-nitrophenyl-beta-D-galactopyranoside served as the chromogenic substrate. S. lactis 7962 was the one exception found. This organism contained rather high levels of beta-gal, and very little beta-Pgal could be detected. beta-Pgal activity was examined in streptococci that differed widely in both their proteolytic ability and rates of lactic acid production during growth in milk. Differences in proteolytic ability did not influence beta-Pgal synthesis; also, the rate of lactic acid production was independent of the level of beta-Pgal present in the cell, since the rate of lactic acid production could be increased approximately fourfold without changing the amount of beta-Pgal present in the cell. Various carbohydrates were tested as potential inducers of the enzyme. Although galactose, either as the free sugar or combined with glucose in lactose, was the only inducer, noninducing sugars such as mannose or glucose showed some ability to cause fluctuations in the basal level of beta-Pgal. Cells growing in mannose or glucose exhibited about 30% of the maximal enzyme levels found in cells growing in lactose or galactose. No gratuitous inducers were found.  相似文献   

19.
AIMS: To verify to what degree reducing capacity is a characterizing parameter of a species, and of the strains themselves within a given species, of lactic acid bacteria. METHODS AND RESULTS: Eighty-eight strains belonging to 10 species of lactic acid bacteria (LAB) isolated from traditional Italian cheeses were studied for their reduction activity: Enterococcus faecalis, Enterococcus faecium, Enterococcus durans, Streptococcus thermophilus, Lactococcus lactis ssp. lactis, Lactobacillus paracasei ssp. paracasei, Lactobacillus plantarum, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus helveticus and Pediococcus pentosaceus. It was observed that the lactococci reached minimum redox potential before the lactobacilli. The reduction rate of Enterococcus spp. and L. lactis ssp. lactis was higher than that of the streptococci and Lactobacillus spp. All the P. pentosaceus strains had poor reduction activity compared with the other species. CONCLUSIONS: The evolution of the redox potential in milk over a time span of 24 h has been found to be a parameter that characterizes a species: the different courses corresponding to the species in question are clearly evident, and interesting differences can also be noted within the same species. SIGNIFICANCE AND IMPACT OF THE STUDY: The reduction aptitude of strains might be used to select and adapt appropriate strains for use as starters for dairy products.  相似文献   

20.
Bulgarian yogurts were manufactured and fortified with 8, 15 and 27 mg of iron kg(-1) of yogurt. The growth and acidifying activity of the starter culture bacteria Streptococcus thermophilus 13a and Lactobacillus delbrueckii subsp. bulgaricus 2-11 were monitored during milk fermentation and over 15 days of yogurt storage at 4 degrees C. Fortifying milk with iron did not affect significantly the growth of the starter culture during manufacture and storage of yogurt. Counts of yogurt bacteria at the end of fermentation of iron-fortified milks were between 2.1 x 10(10) and 4.6 x 10(10) CFU ml(-1), which were not significantly different from numbers in unfortified yogurts. In all batches of yogurt, the viable cell counts of S. thermophilus 13a were approximately three times higher than those of L. delbrueckii subsp. bulgaricus 2-11. Greater decrease in viable cell count over 15 days of storage was observed for S. thermophilus 13a compared to L. delbrueckii subsp. bulgaricus 2-11. Intensive accumulation of lactic acid was observed during incubation of milk and all batches reached pH 4.5 +/- 0.1 after 3.0 h. At the end of fermentation process, lactic acid concentrations in iron-fortified yogurts were between 6.9 +/- 0.4 and 7.3 +/- 0.5 g l(-1). The acidifying activity of starter culture bacteria in the control and iron-fortified milks was similar. There was no increase in oxidized, metallic and bitter off-flavors in iron-fortified yogurts compared to the control. Iron-fortified yogurts did not differ significantly in their sensorial, chemical and microbiological characteristics with unfortified yogurt, suggesting that yogurt is a suitable vehicle for iron fortification and that the ferrous lactate is an appropriate iron source for yogurt fortification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号