首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Influenza A virus nucleoprotein (NP) forms homo-oligomers and multiple copies of NP wrap around genomic RNA, along with a trimeric polymerase making up ribonucleoprotein (RNP) complex. Sequence comparison of more than 2500 influenza A NP showed that this protein contains 30.1 % of polymorphic residues. NP is composed of a head and a body domain and a tail loop/ linker region. The head domain is more conserved than the body domain, as revealed from the structure-based sequence alignment. NP oligomerization is mediated by the insertion of the non-polymorphic and structurally conserved tail loop of one NP molecule to a groove of another NP. The different form of NP oligomers is due to the flexibility of the polymorphic linkers that join the tail loop to the rest of the protein. The RNA binding property of NP is known to involve the protruding element and the flexible basic loop between the head and body domains, both having high degree of primary sequence conservation. To bind RNA, NP may first capture the RNA by the flexible basic loop and then the RNA is clamped by the protruding element.  相似文献   

4.
Yu M  Liu X  Cao S  Zhao Z  Zhang K  Xie Q  Chen C  Gao S  Bi Y  Sun L  Ye X  Gao GF  Liu W 《Journal of virology》2012,86(9):4970-4980
The nuclear export of the influenza A virus ribonucleoprotein (vRNP) is crucial for virus replication. As a major component of the vRNP, nucleoprotein (NP) alone can also be shuttled out of the nucleus by interacting with chromosome region maintenance 1 (CRM1) and is therefore hypothesized to promote the nuclear export of the vRNP. In the present study, three novel nuclear export signals (NESs) of the NP--NES1, NES2, and NES3--were identified as being responsible for mediating its nuclear export. The nuclear export of NES3 was CRM1 dependent, whereas that of NES1 or NES2 was CRM1 independent. Inactivation of these NESs led to an overall nuclear accumulation of NP. Mutation of all three NP-NESs significantly impaired viral replication. Based on structures of influenza virus NP oligomers, these three hydrophobic NESs are found present on the surface of oligomeric NPs. Functional studies indicated that oligomerization is also required for nuclear export of NP. Together, these results suggest that the nuclear export of NP is important for virus replication and relies on its NESs and oligomerization.  相似文献   

5.
T S Huang  P Palese    M Krystal 《Journal of virology》1990,64(11):5669-5673
An artificial vaccinia virus vector-driven replication system for influenza virus RNA has been developed. In this system, a synthetic NS-like gene is replicated and expressed by influenza virus proteins supplied through infection with vaccinia virus recombinant vectors. The minimum subset of influenza virus proteins needed for specific replication and expression of the viral ribonucleoprotein was found to be the three polymerase proteins (PB1, PB2, and PA) and the nucleoprotein.  相似文献   

6.
7.
The influenza viruses contain a segmented, negative strand RNA genome. Each RNA segment is covered by multiple copies of the nucleoprotein (NP) and is associated with the polymerase complex into ribonucleoprotein (RNP) particles. Despite its importance in the virus life cycle, the interactions between the NP and the genome are not well understood. Here, we studied the assembly process of NP-RNA oligomers and analyzed how the oligomeric/monomeric status of RNA-free NP affects RNA binding and oligomerization. Recombinant wild-type NP purified in low salt concentrations and a derived mutant engineered for oligomerization deficiency (R416A) were mainly monomeric in RNA-free solutions as shown by biochemical and electron microscopy techniques. NP monomer formed with RNA a fast 1/1 complex characterized by surface plasmon resonance. In a subsequent and slow process that depended on the RNA length, oligomerization of NP was mediated by RNA binding. In contrast, preparations of wild-type NP purified in high salt concentrations as well as mutant Y148A engineered for deficiency in nucleic acid binding were partly or totally oligomeric in RNA-free solutions. These trimer/tetramer NP oligomers bind directly as oligomers to RNA with a higher affinity than that of the monomers. Both oligomerization routes we characterized could be exploited by cellular or viral factors to modulate or control viral RNA encapsidation by NP.  相似文献   

8.
9.
Developing antiviral therapies for influenza A virus (IAV) infection is an ongoing process because of the rapid rate of antigenic mutation and the emergence of drug-resistant viruses. The ideal strategy is to develop drugs that target well-conserved, functionally restricted, and unique surface structures without affecting host cell function. We recently identified the antiviral compound, RK424, by screening a library of 50,000 compounds using cell-based infection assays. RK424 showed potent antiviral activity against many different subtypes of IAV in vitro and partially protected mice from a lethal dose of A/WSN/1933 (H1N1) virus in vivo. Here, we show that RK424 inhibits viral ribonucleoprotein complex (vRNP) activity, causing the viral nucleoprotein (NP) to accumulate in the cell nucleus. In silico docking analysis revealed that RK424 bound to a small pocket in the viral NP. This pocket was surrounded by three functionally important domains: the RNA binding groove, the NP dimer interface, and nuclear export signal (NES) 3, indicating that it may be involved in the RNA binding, oligomerization, and nuclear export functions of NP. The accuracy of this binding model was confirmed in a NP-RK424 binding assay incorporating photo-cross-linked RK424 affinity beads and in a plaque assay evaluating the structure-activity relationship of RK424. Surface plasmon resonance (SPR) and pull-down assays showed that RK424 inhibited both the NP-RNA and NP-NP interactions, whereas size exclusion chromatography showed that RK424 disrupted viral RNA-induced NP oligomerization. In addition, in vitro nuclear export assays confirmed that RK424 inhibited nuclear export of NP. The amino acid residues comprising the NP pocket play a crucial role in viral replication and are highly conserved in more than 7,000 NP sequences from avian, human, and swine influenza viruses. Furthermore, we found that the NP pocket has a surface structure different from that of the pocket in host molecules. Taken together, these results describe a promising new approach to developing influenza virus drugs that target a novel pocket structure within NP.  相似文献   

10.
A three-dimensional structural model of an influenza virus ribonucleoprotein particle reconstituted in vivo from recombinant proteins and a model genomic vRNA has been generated by electron microscopy. It shows a circular shape and contains nine nucleoprotein monomers, two of which are connected with the polymerase complex. The nucleoprotein monomers show a curvature that may be responsible for the formation of helical structures in the full-size viral ribonucleoproteins. The monomers show distinct contact boundaries at the two sides of the particle, suggesting that the genomic RNA may be located in association with the nucleoprotein at the base of the ribonucleoprotein complex. Sections of the three-dimensional model show a trilobular morphology in the polymerase complex that is consistent with the presence of its three subunits.  相似文献   

11.
12.
13.
14.
Monoclonal antibodies were used to study antigenic variation in the nucleoprotein of influenza A viruses. We found that the nucleoprotein molecule of the WSN/33 strain possesses at least five different determinants. Viruses of other influenza A virus subtypes showed antigenic variation in these nucleoprotein determinants, although changes in only one determinant were detected in H0N1 and animal strains. The nucleoprotein of human strains isolated from 1933 through 1979 could be divided into six groups, based on their reactivities with monoclonal antibodies; these groups did not correlate with any particular hemagglutinin or neuraminidase subtype. Our results indicate that antigenic variation in the nucleoproteins of influenza A viruses proceeds independently of changes in the viral surface antigens and suggest that point mutations and genetic reassortment may account for nucleoprotein variability.  相似文献   

15.
16.

Background  

Two nuclear localization sequences (NLS) in influenza A virus nucleoprotein (NP) have been demonstrated to be critical for nuclear import of NP and viral ribonucleoprotein complexes. However, a deletion mutant lacking these two signals was still able to localize to the nucleus suggesting the presence of yet another (a third) potential NLS in the NP protein. In order to identify the nature of this potential NLS signal in the NP of a WS/33L influenza virus A strain, we utilized the tools of bioinformatics coupled with functional experimental analyses in the present study.  相似文献   

17.
Influenza virus nucleoprotein (NP) is associated with the genome RNA, forming ribonucleoprotein cores. To identify the amino acid sequence involved in RNA binding, we performed Northwestern blot analysis with a set of N- and C-terminal deletion mutants of NP produced in Escherichia coli. The RNA binding region has been mapped between amino acid residues 91 and 188, a stretch of residues that contains a sequence that is not only highly conserved among NPs from A-, B-, and C-type influenza viruses but also similar to the RNA binding domain of a plant virus movement protein.  相似文献   

18.
The influenza viruses contain a segmented, negative stranded RNA genome. Each RNA segment is covered by multiple copies of the nucleoprotein (NP). X-ray structures have shown that NP contains well-structured domains juxtaposed with regions of missing electron densities corresponding to loops. In this study, we tested if these flexible loops gated or promoted RNA binding and RNA-induced oligomerization of NP. We first performed molecular dynamics simulations of wt NP monomer and trimer in comparison with the R361A protein mutated in the RNA binding groove, using the H1N1 NP as the initial structure. Calculation of the root-mean-square fluctuations highlighted the presence of two flexible loops in NP trimer: loop 1 (73–90), loop 2 (200–214). In NP, loops 1 and 2 formed a 10–15 Å-wide pinch giving access to the RNA binding groove. Loop 1 was stabilized by interactions with K113 of the adjacent β-sheet 1 (91–112) that interacted with the RNA grove (linker 360–373) via multiple hydrophobic contacts. In R361A, a salt bridge formed between E80 of loop 1 and R208 of loop 2 driven by hydrophobic contacts between L79 and W207, due to a decreased flexibility of loop 2 and loop 1 unfolding. Thus, RNA could not access its binding groove in R361A; accordingly, R361A had a much lower affinity for RNA than NP. Disruption of the E80-R208 interaction in the triple mutant R361A-E80A-E81A increased its RNA binding affinity and restored its oligomerization back to wt levels in contrast with impaired levels of R361A. Our data suggest that the flexibility of loops 1 and 2 is required for RNA sampling and binding which likely involve conformational change(s) of the nucleoprotein.  相似文献   

19.
Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria‐derived succinate that accumulated both in the respiratory fluids of virus‐challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity in vitro as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus‐triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate‐dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.  相似文献   

20.
L cells expressing either the A/NT/60/68 nucleoprotein or the A/PR/8/34 (H1) hemagglutinin by DNA mediated gene transfer were used to investigate recognition by influenza A specific cytotoxic T lymphocytes (CTL). A subpopulation of CTL that recognized the H1 hemagglutinin was detected in mice primed with either A/PR/8/34 (H1N1) or A/JAP/305/57 (H2N2) influenza viruses. However, neither CTL from mice primed with A/NT/60/68 (H3N2) nor the recombinant virus X31 (H3N2) showed any activity on L cells expressing H1. These results showed that the majority of fully crossreactive CTL do not recognize the hemagglutinin molecule. A comparison between nucleoprotein and hemagglutinin transfected L cells reveals the nucleoprotein as the major target for CTL that are crossreactive on the three pandemic strains of human influenza A virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号