首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remyelination is an important aspect of nerve regeneration after nerve injury but the underlying mechanisms are not fully understood. The neurotrophin receptor, p75(NTR), in activated Schwann cells in the Wallerian degenerated nerve is up-regulated and may play a role in the remyelination of regenerating peripheral nerves. In the present study, the role of p75(NTR) in remyelination of the sciatic nerve was investigated in p75(NTR) mutant mice. Histological results showed that the number of myelinated axons and thickness of myelin sheath in the injured sciatic nerves were reduced in mutant mice compared with wild-type mice. The myelin sheath of axons in the intact sciatic nerve of adult mutant mice is also thinner than that of wild-type mice. Real-time RT-PCR showed that mRNA levels for myelin basic protein and P0 in the injured sciatic nerves were significantly reduced in p75(NTR) mutant animals. Western blots also showed a significant reduction of P0 protein in the injured sciatic nerves of mutant animals. These results suggest that p75(NTR) is important for the myelinogenesis during the regeneration of peripheral nerves after injury.  相似文献   

2.
Remyelination is a critical step for functional nerve regeneration. Here we show that fibrin deposition in the peripheral nervous system after injury is a key regulator of remyelination. After sciatic nerve crush, fibrin is deposited and its clearance correlates with remyelination. Fibrin induces phosphorylation of ERK1/2 and production of p75 NGF low-affinity receptor in Schwann cells and maintains them in a nonmyelinating state, suppresses fibronectin production, and prevents synthesis of myelin proteins. In mice depleted of fibrin(ogen), remyelination of myelinated axons is accelerated due to the faster transition of the Schwann cells to a myelinating state. Regulation of fibrin clearance and/or deposition could be a key regulatory mechanism for Schwann differentiation after nerve damage.  相似文献   

3.
The protein component of the myelin layer is essential for all aspects of peripheral nerves, and its deficiency can lead to structural and functional impairment. The presence of peripheral myelin protein 2 (P2, PMP2, FABP8, M-FABP) in Schwann cells has been known for decades and shown recently to be involved in the lipid homeostasis in the peripheral neural system. However, its precise role during de- and remyelination has yet to be elucidated. To this end, we assessed remyelination after sciatic nerve crush injury in vivo, and in an experimental de/remyelination ex vivo myelinating culture model in P2-deficient (P2 ?/? ) and wild-type (WT) animals. In vivo, the nerve crush paradigm revealed temporal structural and functional changes in P2 ?/? mice as compared to WT animals. Concomitantly, P2 ?/? DRG cultures demonstrated the presence of shorter internodes and enlarged nodes after ex vivo de/remyelination. Together, these data indicate that P2 may play a role in remyelination of the injured peripheral nervous system, presumably by affecting the nodal and internodal configuration.  相似文献   

4.
Basic fibroblast growth factor (FGF-2) is expressed in the peripheral nervous system and is up-regulated after nerve lesion. It has been demonstrated that administration of FGF-2 protects neurons from injury-induced cell death and promotes axonal regrowth. Using transgenic mice over-expressing FGF-2 (TgFGF-2), we addressed the importance of endogenously generated FGF-2 on sensory neuron loss and sciatic nerve regeneration. After sciatic nerve transection, wild-type and transgenic mice showed the same degree of cell death in L5 spinal ganglia. Also, the number of chromatolytic, eccentric, and pyknotic sensory neurons was not changed under elevated levels of FGF-2. Morphometric evaluation of intact nerves from TgFGF-2 mice revealed no difference in number and size of myelinated fibers compared to wild-type mice. One week after crush injury, the number of regenerated axons was doubled and the myelin thickness was significantly smaller in transgenic mice. After 2 and 4 weeks, morphometric analysis and functional tests revealed no differences in recovery of sensory and motor nerve fibers. To study the role of FGF-2 over-expression on Schwann cell proliferation during the early regeneration process, we used BrdU-labeling to mark dividing cells. In transgenic mice, the number of proliferating cells was significantly increased distal to the crush site compared to wild-types. We propose that endogenously synthesized FGF-2 influences early peripheral nerve regeneration by regulating Schwann cell proliferation, axonal regrowth, and remyelination.  相似文献   

5.
The turnover of phospholipids was compared in peripheral nerves of Trembler dysmelinating mutant and control mice, after intraperitoneal and local injection of labeled ethanolamine. In the mutant sciatic nerve, neurochemical analysis showed that [14C]ethanolamine is incorporated into EGP (ethanolamine glycerophospholipids) of the sciatic nerve at a much higher rate in Trembler mutant than in control mice. Furthermore the decay rate of 14C-labeled EGP is faster in Trembler than in normal animals. The accelerated turnover of EGP in Trembler sciatic nerve affects the diacyl-EGP while the renewal of the alkenylacyl-EGP (plasmalogens) is slower than in controls. Quantitative radioautographic study at the ultrastructural level corroborate that the initial increase of the label in Trembler nerve fibers was different in axons, Schwann cells and myelin sheaths. EM radioautographs reveal indeed that the high label content observed in Trembler axons takes place preferentially in the myelinated portions of axons and drops within 1 week. In both myelinated and unmyelinated segments of the axons, the majority of the radioactivity was contained in axolemma and smooth axoplasmic reticulum. The 10-fold increase of label found in the myelin sheath of Trembler nerve fibers at 1 day raises the question of the origin of the labeled EGP, either by a stimulated synthesis in Schwann cells or by transfer from axonally transported phospholipids. In contrast, the label of axons, Schwann cells and myelin sheaths of control nerve remains stable during the same period.  相似文献   

6.

Background

Leptin-deficient ob/ob mice are a model of type 2 diabetes induced peripheral neuropathy. Ob/ob mice exhibit obesity, insulin resistance, hyperglycaemia, and alterations of peripheral nerve fibres and endoneural microvessels. Here we test the hypothesis that cartilage oligomeric matrix protein (COMP)-Ang-1, a soluble and stabile form of Ang-1 which promotes angiogenesis and nerve growth, improves regeneration of nerve fibres and endoneural microvessels in ob/ob mice.

Methods and Findings

COMP-Ang-1 (100 ng/ml) or NaCl were intraperitoneally (i.p.) injected into male (N = 184), 3-month old, ob/ob or ob/+ mice for 7 and 21 days. We measured expression of Nf68, GAP43, Cx32, Cx26, Cx43, and TNFα in sciatic nerves using Western blot analysis. To investigate the inflammation in sciatic nerves, numbers of macrophages and T-cells were counted after immunofluorescence staining. In ultrathin section, number of myelinated/non-mylinated nerve fibers, g-ratio, the thickness of Schwann cell basal lamina and microvessel endothelium were investigated.Endoneural microvessels were reconstructed with intracardial FITC injection. Treatment with COMP-Ang-1 over 21 days significantly reduced fasting blood glucose and plasma cholesterol concentrations compared to saline treated ob/ob mice. In addition, COMP-Ang-1 treatment: 1) up-regulated expression of Nf68 and GAP43; 2) improved expression of gap junction proteins including connexin 32 and 26; 3) suppressed the expression of TNFα and Cx43 and 4) led to decreased macrophage and T-cell infiltration in sciatic nerve of ob/ob mice. The significant changes of sciatic nerve ultrastructure were not observed after 21-day long COMP-Ang-1 treatment. COMP-Ang-1 treated ob/ob mice displayed regeneration of small-diameter endoneural microvessels. Effects of COMP-Ang-1 corresponded to increased phosphorylation of Akt and p38 MAPK upon Tie-2 receptor.

Conclusions

COMP-Ang-1 recovers molecular biomarkers of neuropathy, promotes angiogenesis and suppresses inflammation in sciatic nerves of ob/ob mice suggesting COMP-Ang-1 as novel treatment option to improve morphologic and protein expression changes associated with diabetic neuropathy.  相似文献   

7.
Basic fibroblast growth factor (FGF‐2) is expressed in the peripheral nervous system and is up‐regulated after nerve lesion. It has been demonstrated that administration of FGF‐2 protects neurons from injury‐induced cell death and promotes axonal regrowth. Using transgenic mice over‐expressing FGF‐2 (TgFGF‐2), we addressed the importance of endogenously generated FGF‐2 on sensory neuron loss and sciatic nerve regeneration. After sciatic nerve transection, wild‐type and transgenic mice showed the same degree of cell death in L5 spinal ganglia. Also, the number of chromatolytic, eccentric, and pyknotic sensory neurons was not changed under elevated levels of FGF‐2. Morphometric evaluation of intact nerves from TgFGF‐2 mice revealed no difference in number and size of myelinated fibers compared to wild‐type mice. One week after crush injury, the number of regenerated axons was doubled and the myelin thickness was significantly smaller in transgenic mice. After 2 and 4 weeks, morphometric analysis and functional tests revealed no differences in recovery of sensory and motor nerve fibers. To study the role of FGF‐2 over‐expression on Schwann cell proliferation during the early regeneration process, we used BrdU‐labeling to mark dividing cells. In transgenic mice, the number of proliferating cells was significantly increased distal to the crush site compared to wild‐types. We propose that endogenously synthesized FGF‐2 influences early peripheral nerve regeneration by regulating Schwann cell proliferation, axonal regrowth, and remyelination. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

8.
The TSOD mouse has been established as an inbred strain with spontaneous development of diabetes mellitus as the first clinical signs of diabetes. Polydipsia and polyuria are observed at about 2 months old only in male mice, after which hyperglycemia and hyperinsulinemia are detected. Following these symptoms obesity gradually develops until about 12 months old. In histopathological examination of the pancreas, severe hypertrophy of pancreatic islets was observed due to proliferation and swelling of B cells. In the kidney, thickening of the basement membrane in glomeruli and an increase of the mesangial area were observed at 18 months old. Motor neuropathy in TSOD mice began to appear at 14 months old and most male mice at 17 months old showed weakness of front and hind paws caused by neuron degeneration in the peripheral nerve. In sensory neuropathy, the threshold in the tail pressure test decreased significantly at 12 months old. Light microscopic and electron microscopic examination of sciatic nerves showed a decrease in the density of nerve fibers by the endoneural fibrosis and loss of these fibers. Degenerative changes of myelinated fibers, separation of myelin sheaths with intralamellar edema and remyelination were frequently observed. In the severely affected nerve fibers, the lamellar structure was completely destroyed and macrophages migrated around the myelin sheath or invaded the intramyelin space. Considering these findings similar to non-insulin dependent diabetes mellitus (NIDDM) in humans, the TSOD mouse should be a useful model for the pathogenic study of diabetic complications, especially of peripheral neuropathy.  相似文献   

9.
Sollberger  M.  Erne  B.  Sansano  S.  Steck  A. J.  Schaeren-Wiemers  N. 《Brain Cell Biology》2002,31(1):5-14
The functional importance of the basal lamina in Schwann cell development and in adult peripheral nerve fibers is well known. We have demonstrated previously by confocal microscopy that IgM deposits are present on the basal lamina of myelinating Schwann cells of nerve biopsies from patients with an anti-MAG IgM neuropathy. Therefore, the basal lamina was postulated to represent an early target for the uptake of autoantibodies on the surface of myelinated nerve fibers. In this study, the preparation of cell- and myelin-free basal lamina from human peripheral nerves, using a detergent-dependent method is described and characterized by immunohistochemical and biochemical analysis. Using these methods we demonstrated that an enrichment of basal lamina components of Schwann cells with extraction of myelin could be achieved. Western blot analysis and immunohistochemical characterization showed that anti-MAG IgM antibodies did not recognize an epitope on the basal lamina of normal nerves. The established method will allow in situ investigations of basal lamina components from human peripheral nerves in health and in disease, e.g. peripheral neuropathies of infectious or inflammatory origin.  相似文献   

10.
NDRG1 is an intracellular protein that is induced under a number of stress and pathological conditions, and it is thought to be associated with cell growth and differentiation. Recently, human NDRG1 was identified as a gene responsible for hereditary motor and sensory neuropathy-Lom (classified as Charcot-Marie-Tooth disease type 4D), which is characterized by early-onset peripheral neuropathy, leading to severe disability in adulthood. In this study, we generated mice lacking Ndrg1 to analyze its function and elucidate the pathogenesis of Charcot-Marie-Tooth disease type 4D. Histological analysis showed that the sciatic nerve of Ndrg1-deficient mice degenerated with demyelination at about 5 weeks of age. However, myelination of Schwann cells in the sciatic nerve was normal for 2 weeks after birth. Ndrg1-deficient mice showed muscle weakness, especially in the hind limbs, but complicated motor skills were retained. In wild-type mice, NDRG1 was abundantly expressed in the cytoplasm of Schwann cells rather than the myelin sheath. These results indicate that NDRG1 deficiency leads to Schwann cell dysfunction, suggesting that NDRG1 is essential for maintenance of the myelin sheaths in peripheral nerves. These mice will be used for future analyses of the mechanisms of myelin maintenance.  相似文献   

11.
12.
Fry EJ  Ho C  David S 《Neuron》2007,53(5):649-662
We report a role for Nogo receptors (NgRs) in macrophage efflux from sites of inflammation in peripheral nerve. Increasing numbers of macrophages in crushed rat sciatic nerves express NgR1 and NgR2 on the cell surface in the first week after injury. These macrophages show reduced binding to myelin and MAG in vitro, which is reversed by NgR siRNA knockdown and by inhibiting Rho-associated kinase. Fourteen days after sciatic nerve crush, regenerating nerves with newly synthesized myelin have fewer macrophages than cut/ligated nerves that lack axons and myelin. Almost all macrophages in the cut/ligated nerves lie within the Schwann cell basal lamina, while in the crushed regenerating nerves the majority migrate out. Furthermore, crush-injured nerves of NgR1- and MAG-deficient mice and Y-27632-treated rats show impaired macrophage efflux from Schwann cell basal lamina containing myelinated axons. These data have implications for the resolution of inflammation in peripheral nerve and CNS pathologies.  相似文献   

13.
Despite efforts in peripheral nerve injury and regeneration, it is difficult to achieve a functional recovery following extended peripheral nerve lesions. Even if artificial nerve conduit, cell components and growth factors can enhance nerve regeneration, integration in peripheral nerve repair and regeneration remains yet to be explored. For this study, we used chitosan/gelatin nerve graft constructed with collagenous matrices as a vehicle for Schwann cells and transforming growth factor-β1 to bridge a 10-mm gap of the sciatic nerve and explored the feasibility of improving regeneration and reinnervation in rats. The nerve regeneration was assessed with functional recovery, electrophysiological test, retrograde labeling, and immunohistochemistry analysis during the post-operative period of 16 weeks. The results showed that the internal sides of the conduits were compact enough to prevent the connective tissues from ingrowth. Nerve conduction velocity, average regenerated myelin area, and myelinated axon count were similar to those treated with autograft (p > 0.05) but significantly higher than those bridged with chitosan/gelatin nerve graft alone (p < 0.05). Evidences from retrograde labeling and immunohistochemistry analysis are further provided in support of improving axonal regeneration and remyelination. A designed graft incorporating all of the tissue-engineering strategies for peripheral nerve regeneration may provide great progress in tissue engineering for nerve repair.  相似文献   

14.
Primary demyelination is an important component of a number of human diseases and toxic neuropathies. Animal models of primary demyelination are useful for isolating processes involved in myelin breakdown and remyelination because the complicating events associated with axonal degeneration and regeneration are not present. The tellurium neuropathy model has proven especially useful in this respect. Tellurium specifically blocks synthesis of cholesterol, a major component of PNS myelin. The resulting cholesterol deficit in myelin-producing Schwann cells rapidly leads to synchronous primary demyelination of the sciatic nerve, which is followed by rapid synchronous remyelination when tellurium exposure is discontinued. Known alterations in gene expression for myelin proteins and for other proteins involved in the sequence of events associated with demyelination and subsequent remyelination in the PNS are reviewed, and new data regarding gene expression changes during tellurium neuropathy are presented and discussed.  相似文献   

15.
A time-sequence study of the incorporation and distribution of cholesterol in peripheral nerve myelin was carried out by electron microscope autoradiography. [1,2-3H]Cholesterol was injected into 10-day old mice and the sciatic nerves were dissected out at 10, 20, 40, 60, 90, 120, and 180 min after the injection. 20 min after injection the higher densities of grains due to the presence of [3H]cholesterol were confined to the outer and inner edges of the myelin sheath. Practically no cholesterol was detected in the midzone of the myelin sheath. 1 ½ h after injection, cholesterol showed a wider distribution within the myelin sheath, the higher densities of grains occurring over the two peripheral myelin bands, each approximately 3,100 Å wide. Cholesterol was also present in the center of the myelin sheath but to a considerably lesser extent. 3 h after injection cholesterol appeared homogeneously distributed within the myelin sheath. Schwann cell and axon compartments were also labeled at each time interval studied beginning 20 min postinjection. These observations indicate that preformed cholesterol enters myelin first and almost simultaneously through the inner and outer edges of the sheath; only after 90 min does the density of labeled cholesterol in the central zone of myelin reach the same density as that in the outer and inner zones. These findings suggest that cholesterol used by the nerve fibers in the formation and maintenance of the myelin sheath enters the lamellae from the Schwann cell cytoplasm and from the axon. The possibility of a bidirectional movement of molecules, i.e. from the Schwann cell to the axon and from the axon to the Schwann cell through the myelin sheath, is noted. The results are discussed in the light of recent observations on the exchange, reutilization, and transaxonal movement of cholesterol.  相似文献   

16.
In peripheral nerves, Schwann cells form the myelin sheath that insulates axons and allows rapid propagation of action potentials. Although a number of regulators of Schwann cell development are known, the signaling pathways that control myelination are incompletely understood. In this study, we show that Gpr126 is essential for myelination and other aspects of peripheral nerve development in mammals. A mutation in Gpr126 causes a severe congenital hypomyelinating peripheral neuropathy in mice, and expression of differentiated Schwann cell markers, including Pou3f1, Egr2, myelin protein zero and myelin basic protein, is reduced. Ultrastructural studies of Gpr126-/- mice showed that axonal sorting by Schwann cells is delayed, Remak bundles (non-myelinating Schwann cells associated with small caliber axons) are not observed, and Schwann cells are ultimately arrested at the promyelinating stage. Additionally, ectopic perineurial fibroblasts form aberrant fascicles throughout the endoneurium of the mutant sciatic nerve. This analysis shows that Gpr126 is required for Schwann cell myelination in mammals, and defines new roles for Gpr126 in axonal sorting, formation of mature non-myelinating Schwann cells and organization of the perineurium.  相似文献   

17.
The intercellular cell adhesion molecule-1 (ICAM-1) has been implicated in the recruitment of immune cells during inflammatory processes. Previous studies investigating its involvement in the process of Wallerian degeneration and focusing on its potential role in macrophage recruitement have come to controversial conclusions. To examine whether Wallerian degeneration is altered in the absence of ICAM-1, we have analyzed changes in the expression of axonal and Schwann cell markers following sciatic nerve crush in wildtype and ICAM-1-deficient mice. We report that the lack of ICAM-1 leads to impaired axonal degeneration and regeneration and to alterations in Schwann cell responses following sciatic nerve crush. Degradation of neurofilament protein, the collapse of axonal profiles, and the re-expression of neurofilament proteins are substantially delayed in the distal nerve segment of ICAM-1-/- mice. In contrast, the degradation of myelin, as determined by immunostaining for myelin protein zero, is unaltered in the mutants. Upregulation of GAP-43 and p75 neurotrophin receptor (p75NTR) expression, characteristic for Schwann cells dedifferentiating in response to nerve injury, is differentially altered in the mutant animals. These results indicate that ICAM-1 is essential for the normal progression of axonal degeneration and regeneration in distal segments of injured peripheral nerves.  相似文献   

18.
The rapid accumulation of myelin in the peripheral nervous system during the early postnatal period requires large amounts of cholesterol, a major myelin lipid. All of the cholesterol accumulating in the developing rat sciatic nerve is synthesized locally within the nerve, rather than being derived from the supply in lipoproteins in the systemic circulation (Jurevics and Morell, J. Lipid Res. 5:112–120; 1994). Since this lack of utilization of circulating cholesterol may relate to exclusion by the blood-nerve barrier, we examined the sources of cholesterol needed for regeneration following nerve injury, when the blood-nerve barrier is breached. One sciatic nerve was crushed or transected, and at various times later, the rate of cholesterol accumulation was compared with the rate of local in vivo synthesis of cholesterol within the nerve, utilizing intraperitoneally injected 3H2O as precursor. The accumulation of additional cholesterol in nerve during regeneration and remyelination could all be accounted for by that locally synthesized within the nerve. There was also an increase in cholesterol esters in injured nerve segments; in crushed nerves, these levels decreased during regeneration and remyelination, consistent with reutilization of cholesterol originally salvaged by phagocytic macrophages and Schwann cells. Thus, regeneration and remyelination following injury in sciatic nerve utilizes both salvaged cholesterol and cholesterol synthesized locally within the nerve, but not cholesterol from the circulation.  相似文献   

19.
Immunocytological localization of the major glycoprotein of peripheral myelin P0 and its associated carbohydrate structures L2/HNK-1 and L3 was performed at the light- and electron-microscopic levels in mouse sciatic nerves at several developmental stages and in adulthood. P0 was first expressed on Schwann cells at the time that Schwann cells associated with axons on a 1:1 basis. P0 remains expressed at all times of myelin formation and in compact myelin. After cessation of myelination P0 is no longer detectable in the uncompacted parts of myelin, i.e., Schmidt-Lanterman incisures, paranodal loops, and outer and inner mesaxons. P0 is not detectable on basement membranes, interstitial collagens, and non-myelin-forming Schwann cells. The associated carbohydrate epitope L2 does not follow the expression of P0 at any developmental or adult stage. Until 21 days the L2 epitope is confined to nonmyelinated fibers. In sciatic nerves of mice older than 8 weeks, however, only a few nonmyelinated fibers remain L2-positive. L2 immunoreactivity is clearly seen in a subpopulation of compact myelin figures largely associated with motor fibers. The L3 epitope is never detectable on nonmyelinated fibers and becomes first visible when compact myelin is discerned. Unlike the L2 epitope L3 is present in most, if not all, compact myelin figures. These observations suggest that P0 may be involved in ensheathment of axons by Schwann cells at the decisive stages of initiation of myelination and later on, possibly in conjunction with the L3 carbohydrate structure, in maintenance of compact myelin. The appearance of the L2 carbohydrate epitopes in compact myelin of largely motor and fewer sensory nerve fibers at times when morphogenesis of myelin has ceased remains to be elucidated in functional terms.  相似文献   

20.
The myelin of central and peripheral nervous system of UDP-galactose-ceramide galactosyltransferase deficient mice (cgt -/-) is completely depleted of its major lipid constituents, galactocerebrosides and sulfatides. The deficiency of these glycolipids affects the biophysical properties of the myelin sheath and causes the loss of the rapid saltatory conduction velocity of myelinated axons. With the onset of myelination, null mutant cgt -/- mice develop fatal neurological defects. CNS and PNS analysis of cgt -/- mice revealed (1) hypomyelination of axons of the spinal cord and optic nerves, but no apoptosis of oligodendrocytes, (2) redundant myelin in younger mice leading to vacuolated nerve fibers in cgt -/- mice, (3) the occurrence of multiple myelinated CNS axons, and (4) severely distorted lateral loops in CNS paranodes. The loss of saltatory conduction is not associated with a randomization of voltage-gated sodium channels in the axolemma of PNS fibers. We conclude that cerebrosides (GalC) and sulfatides (sGalC) play a major role in CNS axono-glial interaction. A close axono-glial contact is not a prerequisite for the spiraling and compaction process of myelin. Axonal sodium channels remain clustered at the nodes of Ranvier independent of the change in the physical properties of myelin membrane devoid of galactosphingolipids. Increased intracellular concentrations of free ceramides do not trigger apoptosis of oligodendrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号