首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Video recordings are commonly used to study the types, amount, and size of food items provided to nestling birds. However, the accuracy and repeatability of estimates of the size of food items from video recordings has not been examined. We assessed three aspects of the reliability of measuring prey size from video recordings of Great Tits (Parus major) provisioning nestlings. To test the accuracy of measurements of prey size (length and width) used to determine prey volume, we molded artificial plasticine caterpillars and compared their size and volume as determined using measurements of length and width on screenshots of video recordings (using the vertical diameter of nest‐box entrance holes as a size reference) to their actual size and volume. We also examined within‐ and among‐observer repeatability of measurements of the size and volume of actual prey items delivered to nestlings by adult Great Tits. We found that observers were able to accurately measure prey size and determine volume, with high agreement between the actual size and volume of plasticine caterpillars and the size and volume as determined from measurements made on screenshots from video recordings (rICC = 0.99). In addition, within‐ and among‐observer repeatability were also high (rICC = 0.98 and 0.93, respectively). Overall, our results suggest that the size of prey items delivered to nestlings by adults in video recordings can be accurately measured and those measurements, in turn, can be used to accurately determine the volume of those insect prey.  相似文献   

2.
    
Telomere length (TL) is increasingly being used as a biomarker of senescence, but measuring telomeres remains a challenge. Within tissue samples, TL varies between cells and chromosomes. Class I telomeres are (presumably static) interstitial telomeric sequences, while terminal telomeres have been divided in shorter (Class II) telomeres and ultralong (Class III) telomeres, and the presence of the latter varies strongly between species. Class II telomeres typically shorten with age, but little is known of Class III telomere dynamics. Using multiple experimental approaches, we show great tits to have ultralong telomeres, and we investigated age effects on Class II and III telomeres using a longitudinal approach (our method excludes Class I telomeres). In adults, TL averaged over the whole distribution did not significantly change with age. However, more detailed analyses showed that Class II TL did shorten with age, and, as in other species, the longest Class II telomeres within individuals shortened more quickly with age. In contrast, Class III TL did not shorten with age within individual adults. Surprisingly, we found the opposite pattern in nestlings: Class III TL shortened significantly with age, while the age effect on Class II TL was close to zero. Thus, Class III TL may provide information on developmental history, while Class II TL provides information on telomere dynamics in adulthood. These findings have practical implications for telomere studies and raise the interesting question of what causes variation in TL dynamics between chromosomes within individuals and how this is related to development.  相似文献   

3.
    
Understanding the ecology and evolution of parasites is contingent on identifying the selection pressures they face across their infection landscape. Such a task is made challenging by the fact that these pressures will likely vary across time and space, as a result of seasonal and geographical differences in host susceptibility or transmission opportunities. Avian haemosporidian blood parasites are capable of infecting multiple co‐occurring hosts within their ranges, yet whether their distribution across time and space varies similarly in their different host species remains unclear. Here, we applied a new PCR method to detect avian haemosporidia (genera Haemoproteus, Leucocytozoon, and Plasmodium) and to determine parasite prevalence in two closely related and co‐occurring host species, blue tits (Cyanistes caeruleus, N = 529) and great tits (Parus major, N = 443). Our samples were collected between autumn and spring, along an elevational gradient in the French Pyrenees and over a three‐year period. Most parasites were found to infect both host species, and while these generalist parasites displayed similar elevational patterns of prevalence in the two host species, this was not always the case for seasonal prevalence patterns. For example, Leucocytozoon group A parasites showed inverse seasonal prevalence when comparing between the two host species, being highest in winter and spring in blue tits but higher in autumn in great tits. While Plasmodium relictum prevalence was overall lower in spring relative to winter or autumn in both species, spring prevalence was also lower in blue tits than in great tits. Together, these results reveal how generalist parasites can exhibit host‐specific epidemiology, which is likely to complicate predictions of host–parasite co‐evolution.  相似文献   

4.
    
Social interactions are rarely random. In some instances, animals exhibit homophily or heterophily, the tendency to interact with similar or dissimilar conspecifics, respectively. Genetic homophily and heterophily influence the evolutionary dynamics of populations, because they potentially affect sexual and social selection. Here, we investigate the link between social interactions and allele frequencies in foraging flocks of great tits (Parus major) over three consecutive years. We constructed co‐occurrence networks which explicitly described the splitting and merging of 85,602 flocks through time (fission–fusion dynamics), at 60 feeding sites. Of the 1,711 birds in those flocks, we genotyped 962 individuals at 4,701 autosomal single nucleotide polymorphisms (SNPs). By combining genomewide genotyping with repeated field observations of the same individuals, we were able to investigate links between social structure and allele frequencies at a much finer scale than was previously possible. We explicitly accounted for potential spatial effects underlying genetic structure at the population level. We modelled social structure and spatial configuration of great tit fission–fusion dynamics with eigenvector maps. Variance partitioning revealed that allele frequencies were strongly affected by group fidelity (explaining 27%–45% of variance) as individuals tended to maintain associations with the same conspecifics. These conspecifics were genetically more dissimilar than expected, shown by genomewide heterophily for pure social (i.e., space‐independent) grouping preferences. Genomewide homophily was linked to spatial configuration, indicating spatial segregation of genotypes. We did not find evidence for homophily or heterophily for putative socially relevant candidate genes or any other SNP markers. Together, these results demonstrate the importance of distinguishing social and spatial processes in determining population structure.  相似文献   

5.
    
Small wintering passerines adaptively modulate daily body mass acquisition as part of their energy management policy. However, whether birds optimize overnight mass loss or body mass at dawn remains poorly understood. We studied environmental correlates of individual variation in body mass at dusk, overnight mass loss and body mass at dawn in a wild population of Great Tits Parus major wintering in northern Fennoscandia. Body mass at dusk, overnight mass loss and body mass at dawn were independent of prevailing conditions despite extremely low night ambient temperatures. Body mass at dusk was higher in males than in females, and decreased throughout winter and when snowfall was higher in the previous month. Overnight mass loss increased with precipitation during the previous week and tended to be higher in mid‐winter, when nights were longest. However, birds reduced overnight mass loss with higher temperatures in the previous week and higher precipitation in the previous 2 weeks. Dawn body mass was strongly correlated with dusk body mass and overnight mass loss, and showed only mild associations with weather variables once dusk mass was accounted for. Body mass in roosting boreal Great Tits seems to be constrained by recent snowfall as the winter progresses, but otherwise appears to be mostly unaffected by previous and current temperatures, suggesting a regular use of facultative hypothermia.  相似文献   

6.
    
Understanding species coexistence has long been a major goal of ecology. Coexistence theory for two competing species posits that intraspecific density dependence should be stronger than interspecific density dependence. Great tits and blue tits are two bird species that compete for food resources and nesting cavities. On the basis of long‐term monitoring of these two competing species at sites across Europe, combining observational and manipulative approaches, we show that the strength of density regulation is similar for both species, and that individuals have contrasting abilities to compete depending on their age. For great tits, density regulation is driven mainly by intraspecific competition. In contrast, for blue tits, interspecific competition contributes as much as intraspecific competition, consistent with asymmetric competition between the two species. In addition, including age‐specific effects of intra‐ and interspecific competition in density‐dependence models improves predictions of fluctuations in population size by up to three times.  相似文献   

7.
    
Next‐generation sequencing (NGS) technologies are getting cheaper and easier and hence becoming readily accessible for many researchers in biological disciplines including ecology. In this issue of Molecular Ecology, Sudakaran et al. (2012) show how the NGS revolution contributes to our better and more comprehensive understanding of ecological interactions between gut symbiotic microbiota and the host organism. Using the European red firebug Pyrrhocoris apterus as a model system, they demonstrated that the gut microbiota consists of a small number of major bacterial phylotypes plus other minor bacterial associates. The major bacteria are localized in a specific anoxic section of the midgut and quantitatively account for most of the gut microbiota irrespective of host's geographic populations. The specific gut microbiota is established through early nymphal development of the host insect. Interestingly, the host feeding on different food, namely linden seeds, sunflower seeds or wasp larvae, scarcely affected the symbiont composition, suggesting homoeostatic control over the major symbiotic microbiota in the anoxic section of the midgut. Some of the minor components of the gut microbiota, which conventional PCR/cloning/sequencing approaches would have failed to detect, were convincingly shown to be food‐derived. These findings rest on the robust basis of high‐throughput sequencing data, and some of them could not be practically obtained by conventional molecular techniques, highlighting the significant impact of NGS approaches on ecological aspects of host–symbiont interactions in a nonmodel organism.  相似文献   

8.
    
Previous studies have suggested that spotted patterns are important in the protection of ladybirds against attack by avian predators. Nevertheless, these studies were based on the comparison of several ladybird species differing in colouration, but also in other traits (e.g., chemical protection). We presented natural as well as artificial colour modifications (using brown, red, and black paint) of the ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) – an invasive alien species for Europe – to an avian predator, the great tit, Parus major L. (Passeriformes: Paridae). All forms were considered to be equal in size, but differed in colouration and in the presence of spots. The chemical protection was equal except for one form. The birds displayed strong avoidance of all forms with red and black colouration; beetles with artificially removed red colouration (painted brown) were attacked more often. The beetles painted brown with black spots were slightly better protected than the painted beetles without spots. We can sum up that spots are of some importance in the protection of ladybirds; nevertheless, red and black colouration is the main part of the visual signal.  相似文献   

9.
    
Multiple predators affect the evolution of aposematic signals in nature and these predators may substantially differ in terms of ecological and cognitive parameters. However, most experimental studies testing the evolution of Batesian mimics use only a single species of predator (usually the great tit or a domestic chick). Therefore, in the present study, we experimentally tested the responses of five passerine predators to an artificially made Batesian mimic (a cockroach equipped with the warning pattern of the red firebug) with respect to their dietary ecology. Half of the individuals of each species were fed on unmodified roaches before the experiment, whereas the other half were fed with mealworms and thus had no previous experience with roaches. We found that Batesian mimics were better protected than inconspicuous prey against inexperienced great tits and robins alone. The other three bird species showed high level of neophobia; therefore, the effect of warning coloration could not be assessed. We also found that experienced birds attacked a greater number of Batesian mimics compared to inexperienced individuals of all tested species, with the exception of blackcaps. In the great tits, robins, and blue tits, a significant number of experienced birds attacked the Batesian mimic, which was possibly the result of a learned search image for a roach. Our results suggest that using a limited array of predators to describe evolutionary processes forming the diversity of antipredatory strategies of the prey may be biased and need not describe the situation occurring in nature.  相似文献   

10.
    
Phenological shifts and associated changes in the temporal match between trophic levels have been a major focus of the study of ecological consequences of climate change. Previously, the food peak has been thought to respond as an entity to warming temperatures. However, food peak architecture, that is, timings and abundances of prey species and the level of synchrony between them, determines the timing and shape of the food peak. We demonstrate this with a case example of three passerine prey species and their predator. We explored temporal trends in the timing, height, width, and peakedness of prey availabilities and explained their variation with food peak architecture and ambient temperatures of prebreeding and breeding seasons. We found a temporal match between the predator's breeding schedule and food availability. Temporal trends in the timing of the food peak or in the synchrony between the prey species were not found. However, the food peak has become wider and more peaked over time. With more peaked food availabilities, predator's breeding success will depend more on the temporal match between its breeding schedule and the food peak, ultimately affecting the timing of breeding in the predator population. The height and width of the food peak depended on the abundances and breeding season lengths of individual prey species and their reciprocal synchronies. Peakednesses of separate prey species' availability distributions alone explained the peakedness of the food peak. Timing and quantity of food production were associated with temperatures of various time periods with variable relevance in different prey species. Alternating abundances of early and late breeding prey species caused high annual fluctuation in the timing of the food peak. Interestingly, the food peak may become later even when prey species' schedules are advanced. Climate warming can thus produce unexpected changes in the food availabilities, intervening in trophic interactions.  相似文献   

11.
    
The microbiota has a broad range of impacts on host physiology and behaviour, pointing out the need to improve our comprehension of the drivers of host–microbiota composition. Of particular interest is whether the microbiota is acquired passively, or whether and to what extent hosts themselves shape the acquisition and maintenance of their microbiota. In birds, the uropygial gland produces oily secretions used to coat feathers that have been suggested to act as an antimicrobial defence mechanism regulating body feather microbiota. However, our comprehension of this process is still limited. In this study, we for the first time coupled high‐throughput sequencing of the microbiota of both body feathers and the direct environment (i.e., the nest) in great tits with chemical analyses of the composition of uropygial gland secretions to examine whether host chemicals have either specific effects on some bacteria or nonspecific broad‐spectrum effects on the body feather microbiota. Using a network approach investigating the patterns of co‐occurrence or co‐exclusions between chemicals and bacteria within the body feather microbiota, we found no evidence for specific promicrobial or antimicrobial effects of uropygial gland chemicals. However, we found that one group of chemicals was negatively correlated to bacterial richness on body feathers, and a higher production of these chemicals was associated with a poorer body feather bacterial richness compared to the nest microbiota. Our study provides evidence that chemicals produced by the host might function as a nonspecific broad‐spectrum antimicrobial defence mechanism limiting colonization and/or maintenance of bacteria on body feathers, providing new insight about the drivers of the host's microbiota composition in wild organisms.  相似文献   

12.
    
Many organisms advance their seasonal reproduction in response to global warming. In birds, which regress their gonads to a nonfunctional state each winter, these shifts are ultimately constrained by the time required for gonadal development in spring. Gonadal development is photoperiodically controlled and shows limited phenotypic plasticity in relation to environmental factors, such as temperature. Heritable variation in the time required for full gonadal maturation to be completed, based on both onset and speed of development and resulting in seasonally different gonad sizes among individuals, is thus a crucial prerequisite for an adaptive advancement of seasonal reproduction in response to changing temperatures. We measured seasonal gonadal development in climate‐controlled aviaries for 144 great tit (Parus major) pairs, which consisted of siblings obtained as whole broods from the wild. We show that the extent of ovarian follicle development (follicle size) in early spring is highly heritable (h2 = 0.73) in females, but found no heritability of the extent of testis development in males. However, heritability in females decreased as spring advanced, caused by an increase in environmental variance and a decrease in additive genetic variation. This low heritability of the variation in a physiological mechanism underlying reproductive timing at the time of selection may hamper genetic adaptation to climate change, a key insight as this great tit population is currently under directional selection for advanced egg‐laying.  相似文献   

13.
Most ladybirds (Coleoptera: Coccinellidae) possess chemical protection against predators and signal its presence by less or more conspicuous coloration, which can be considered as a warning. Most ladybirds possess a dotted pattern, althougn the number, shape, and size of the spots, as well as their colour, varies considerably. Almost all ladybirds have a characteristic general appearance (body shape). We considered these traits to be used in ladybird recognition by avian predators. In the present study, we compared the reactions of avian predators ( Parus major ) caught in the wild, to four differently coloured ladybird beetles ( Coccinella septempunctata , Exochomus quadripustulatus , Subcoccinella vigintiquatuorpunctata , and Cynegetis impunctata ) and two artificial modifications of C. septempunctata ; the first was deprived of their elytral spotted pattern by painting it brown, the other had their elytra removed (i.e. altering their general ladybird appearance). Ladybirds with a spotted pattern were attacked less frequently than unspotted ones. Ladybirds with removed elytra were attacked much more often than any ladybird with a preserved general appearance. The results obtained in the present study suggest the high importance of the spotted pattern as well as general appearance in the ladybird recognition process. Additional experiments with naïve birds (hand-reared P. major ) demonstrated the innateness of the aversion to two differently spotted ladybird species ( C. septempunctata and Scymnus frontalis ).  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 234–242.  相似文献   

14.
    
Negative density dependence of clutch size is a ubiquitous characteristic of avian populations and is partly due to within‐individual phenotypic plasticity. Yet, very little is known about the extent to which individuals differ in their degree of phenotypic plasticity, whether such variation has a genetic basis and whether level of plasticity can thus evolve in response to selection. Using 18 years of data of a Dutch great tit population (Parus major), we show that females reduced clutch size with increasing population density (slopes of the reaction norms), differed strongly in their average clutch size (elevations of the reaction norms) at the population‐mean density and that the latter variation was partly heritable. In contrast, we could not detect individual variation in phenotypic plasticity (‘I × E’). Level of plasticity is thus not likely to evolve in response to selection in this population. Observed clutch sizes deviated more from the estimated individual reaction norms in certain years and densities, implying that the within‐individual between‐year variance (so‐called residual variance) of clutch size was heterogeneous with respect to these factors. Given the observational nature of this study, experimental manipulation of density is now warranted to confirm the causality of the observed density effects. Our analyses demonstrate that failure to acknowledge this heterogeneity would have inflated the estimate of ‘I × E’ and led to misinterpretation of the data. This paper thereby emphasizes the fact that heterogeneity in residuals can provide biologically insightful information about the ecological processes underlying the data.  相似文献   

15.
16.
    
Host range is a key element of a parasite's ecology and evolution and can vary greatly depending on spatial scale. Generalist parasites frequently show local population structure in relation to alternative sympatric hosts (i.e. host races) and may thus be specialists at local scales. Here, we investigated local population specialization of a common avian nest‐based parasite, the hen flea Ceratophyllus gallinae (Schrank), exploiting two abundant host species that share the same breeding sites, the great tit Parus major (Linnaeus) and the collared flycatcher Ficedula albicollis (Temminck). We performed a cross‐infestation experiment of fleas between the two host species in two distinct study areas during a single breeding season and recorded the reproductive success of both hosts and parasites. In the following year, hosts were monitored again to assess the long‐term impact of cross‐infestation. Our results partly support the local specialization hypothesis: in great tit nests, tit fleas caused higher damage to their hosts than flycatcher fleas, and in collared flycatcher nests, flycatcher fleas had a faster larval development rates than tit fleas. However, these results were significant in only one of the two studied areas, suggesting that the location and history of the host population can modulate the specialization process. Caution is therefore called for when interpreting single location studies. More generally, our results emphasize the need to explicitly account for host diversity in order to understand the population ecology and evolutionary trajectory of generalist parasites.  相似文献   

17.
    
Heritable personality variation is subject to fluctuating selection in many animal taxa; a major unresolved question is why this is the case. A parsimonious explanation must involve a general ecological process: a likely candidate is the omnipresent spatiotemporal variation in conspecific density. We tested whether spatiotemporal variation in density within and among nest box plots of great tits (Parus major) predicted variation in selection acting on exploratory behaviour (= 48 episodes of selection). We found viability selection favouring faster explorers under lower densities but slower explorers under higher densities. Temporal variation in local density represented the primary factor explaining personality‐related variation in viability selection. Importantly, birds did not anticipate changes in selection by means of adaptive density‐dependent plasticity. This study thereby provides an unprecedented example of the key importance of the interplay between fluctuating selection and lack of adaptive behavioural plasticity in maintaining animal personality variation in the wild.  相似文献   

18.
    
In vertebrates, darker individuals are often found to be more active and willing to take risks (representing characteristics of a ‘proactive’ coping style), whereas lighter individuals are instead more cautious and less active (representing characteristics of a ‘reactive’ coping style). It is thus generally expected that melanin‐based coloration and proactivity form a suite of positively integrated traits at the among‐individual level. Here, we use a multigenerational pedigree of free‐living great tits (Parus major) to partition variation in, and the correlation between, melanin‐based breast stripe (‘tie’) size and exploration behaviour (a proxy for coping style) into its among‐ and within‐individual components. We show that both traits harbour heritable variation. Against predictions, tie size and speed of exploration were negatively correlated at the among‐individual level due to the combined influences of permanent environmental and additive genetic effects. By contrast, the two traits were weakly positively correlated within individuals (i.e. individuals increasing in tie size after moult tended to become more explorative). The patterns of among‐individual covariance were not caused by correlational selection as we found additive and opposite selection pressures acting on the two traits. These findings imply that testing hypotheses regarding the existence of a ‘syndrome’ at the among‐individual level strictly requires variance partitioning to avoid inappropriate interpretations as the negative ‘unpartitioned’ phenotypic correlation between exploration and tie size resulted from counteracting effects of within‐ and among‐individual correlations. Identifying sources and levels of (co)variation in phenotypic traits is thus critical to our understanding of biological patterns and evolutionary processes.  相似文献   

19.
20.
    
Many colour ornaments are composite traits consisting of at least four components, which themselves may be more complex, determined by independent evolutionary pathways, and potentially being under different environmental control. To date, little evidence exists that several different components of colour elaboration are condition dependent and no direct evidence exists that different ornamental components are affected by different sources of variation. For example, in carotenoid‐based plumage colouration, one of the best‐known condition‐dependent ornaments, colour elaboration stems from both condition‐dependent pigment concentration and structural components. Some environmental flexibility of these components has been suggested, but specifically which and how they are affected remains unknown. Here, we tested whether multiple colour components may be condition dependent, by using a comprehensive 3 × 2 experimental design, in which we carotenoid supplemented and immune challenged great tit nestlings (Parus major) and quantified effects on different components of colouration. Plumage colouration was affected by an interaction between carotenoid availability and immune challenge. Path analyses showed that carotenoid supplementation increased plumage saturation via feather carotenoid concentration and via mechanisms unrelated to carotenoid deposition, while immune challenge affected feather length, but not carotenoid concentration. Thus, independent condition‐dependent pathways, affected by different sources of variation, determine colour elaboration. This provides opportunities for the evolution of multiple signals within components of ornamental traits. This finding indicates that the selective forces shaping the evolution of different components of a composite trait and the trait's signal content may be more complex than believed so far, and that holistic approaches are required for drawing comprehensive evolutionary conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号