首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Rotaviruses     
Koabayashi N  Urasawa S 《Uirusu》2000,50(2):157-172
  相似文献   

2.
3.
Rotaviruses are the most common cause of severe gastroenteritisin infants and children worldwide. Early events of virus bindingand entry are the critical determinants of cellular permissivenessto rotavirus replication. The only known ligands for rotavirusesare sialic acids. We now report that simian rotaviruses bindpreferentially to a subset of sialylated glycoconjugates, i.e.glycoproteins containing O-linked sialic acid moieties. Rotavirusesare able to distinguish between sialylated trisaccharide ligandspresented as neoglycolipids. Higher avidity binding by rotavirusesis explained by multivalent binding to clustered sialic acidmoieties. Our in vitro data are extended to explain the protectiveeffect of mucins in the murine model of rotavirus disease andthe specific binding by rotavirus to a high molecular weightsialomucin in the infant mouse intestine. Rotavirus bindingto a sialomucin may be analogous to selectin-mediated mechanismsof cellular adhesion, and may be advantageous to the virus inthe dynamic environment of the intestine. neoglycoconjugates receptor rotavirus sialic acids sialomucins  相似文献   

4.
5.
6.
轮状病毒检测技术   总被引:2,自引:0,他引:2  
轮状病毒是人和动物急性腹泻的重要病原 ,对轮状病毒进行快速、准确的检测对于疾病监测和疫情控制极为重要。从病原学、免疫学以及基因检测三方面 ,总结了轮状病毒检测技术的发展状况 ,重点介绍了较为成熟的免疫学技术 ,最新发展的实时荧光定量PCR、核酸序列依赖的扩增等分子生物学新技术 ,并对未来轮状病毒检测技术的发展趋势进行了展望。  相似文献   

7.
Rotaviruses code for two types of glycoprotein precursors   总被引:1,自引:0,他引:1  
Rotaviruses are nonenveloped viruses that code for two glycoproteins: a structural glycoprotein (VP7) and a nonstructural glycoprotein (NS29). The precursor to VP7 (37K) was shown to contain a 1.5K cleavable signal sequence. The 37K precursor was authentically processed (signal sequence cleaved and the polypeptide "core" glycosylated) when synthesized in a cell-free system supplemented with dog pancreatic microsomes. Similar experiments were performed with the nonstructural glycoprotein precursor (20K); however, the 20K precursor contained an integral (noncleavable) signal sequence. Both precursors were inserted into membranes cotranslationally and both glycosylated products underwent posttranslational oligosaccharide processing. The results suggest a morphogenetic scheme for the simian rotavirus SA11.  相似文献   

8.
A number of viruses show a naturally extended tropism for tumor cells whereas other viruses have been genetically modified or adapted to infect tumor cells. Oncolytic viruses have become a promising tool for treating some cancers by inducing cell lysis or immune response to tumor cells. In the present work, rotavirus strains TRF-41 (G5) (porcine), RRV (G3) (simian), UK (G6-P5) (bovine), Ym (G11-P9) (porcine), ECwt (murine), Wa (G1-P8), Wi61 (G9) and M69 (G8) (human), and five wild-type human rotavirus isolates were passaged multiple times in different human tumor cell lines and then combined in five different ways before additional multiple passages in tumor cell lines. Cell death caused by the tumor cell-adapted isolates was characterized using Hoechst, propidium iodide, 7-AAD, Annexin V, TUNEL, and anti-poly-(ADP ribose) polymerase (PARP) and -phospho-histone H2A.X antibodies. Multiple passages of the combined rotaviruses in tumor cell lines led to a successful infection of these cells, suggesting a gain-of-function by the acquisition of greater infectious capacity as compared with that of the parental rotaviruses. The electropherotype profiles suggest that unique tumor cell-adapted isolates were derived from reassortment of parental rotaviruses. Infection produced by such rotavirus isolates induced chromatin modifications compatible with apoptotic cell death.  相似文献   

9.
10.
11.
12.
少数民族新生儿及婴幼儿中人轮状病毒分子流行病学研究   总被引:1,自引:0,他引:1  
用聚丙烯酰胺凝胶电泳技术,对内蒙古自治区三个不同地理位置的少数民族自治旗及一个城市汉族对照区秋冬季采集的新生儿胎便及婴幼儿急性腹泻便进行轮状病毒RNA基因组特点分析。共检测胎便标本146份,腹泻便标中116份。结果表明:几个少数民族地区流行的轮状病毒均以A组第Ⅱ业组为士,并在一个地区有多种差异电泳型存在。新生儿胎便中可检出轮状病毒并显示了特征性A组轮状病毒RNA基因型。胎便小轮状病毒检出率高的地区,腹泻便检出率也相应高,轮状病毒的检出率与民族、地理位置尤明显关系,而与当地的卫生条件及地形有关。阳性标本使用A组单克隆抗体酶标免疫试剂进一步证实。  相似文献   

13.
Rotaviruses are the major etiologic agents of severe diarrhea in children. Many rotaviruses encode a hemagglutinin which binds to sialic acids. We report that rotaviruses specifically recognize the neutral glycosphingolipid gangliotetraosylceramide (asialo-GM1 or GA1). GA1 resolved by thin-layer chromatography is bound by rotavirus, and binding is blocked by neutralizing rotavirus antiserum. Similar glycosphingolipid structures, such as globoside, gangliotriaosylceramide, and GA1 oxidized with galactose oxidase are ineffective in binding rotavirus. Other enteric viruses also specifically bind GA1. GA1 adsorbed to polystyrene beads inhibits rotavirus replication in vitro (as do anti-GA1 antibodies). The use of orally administered immobilized GA1 or anti-GA1 antibodies may prove useful in preventing or attenuating rotaviral and other enteric viral infections.  相似文献   

14.
轮状病毒(RVs)是引起婴幼儿及动物非细菌性胃肠炎的重要病原体.研究发现,人类组织血型抗原(HBGAs)可能是RVs的结合受体.HBGAs具有丰富的多态性,包含ABO、分泌型及Lewis抗原.研究表明,不同P型的RVs与HBGAs的结合具有型特异性,而且不同人群对各型RVs易感性存在差异.因此,研究RVs与HBGAs的相互作用对于阐明RV感染的致病机理及RV疫苗的设计具有重要意义.  相似文献   

15.
Group A human rotaviruses (RVs) are a major cause of severe gastroenteritis in infants and young children. Yet, aside from the genes encoding serotype antigens (VP7; G-type and VP4; P-type), little is known about the genetic make-up of emerging and endemic human RV strains. To gain insight into the diversity and evolution of RVs circulating at a single location over a period of time, we sequenced the eleven-segmented, double-stranded RNA genomes of fifty-one G3P[8] strains collected from 1974 to 1991 at Children''s Hospital National Medical Center, Washington, D. C. During this period, G1P[8] strains typically dominated, comprising on average 56% of RV infections each year in hospitalized children. A notable exception was in the 1976 and 1991 winter seasons when the incidence of G1P[8] infections decreased dramatically, a trend that correlated with a significant increase in G3P[8] infections. Our sequence analysis indicates that the 1976 season was characterized by the presence of several genetically distinct, co-circulating clades of G3P[8] viruses, which contained minor but significant differences in their encoded proteins. These 1976 lineages did not readily exchange gene segments with each other, but instead remained stable over the course of the season. In contrast, the 1991 season contained a single major clade, whose genome constellation was similar to one of the 1976 clades. The 1991 clade may have gained a fitness advantage after reassorting with as of yet unidentified RV strain(s). This study reveals for the first time that genetically distinct RV clades of the same G/P-type can co-circulate and cause disease. The findings from this study also suggest that, although gene segment exchange occurs, most reassortant strains are replaced over time by lineages with preferred genome constellations. Elucidation of the selective pressures that favor maintenance of RVs with certain sets of genes may be necessary to anticipate future vaccine needs.  相似文献   

16.
Although few simian rotaviruses (RVs) have been isolated, such strains have been important for basic research and vaccine development. To explore the origins of simian RVs, the complete genome sequences of strains PTRV (G8P[1]), RRV (G3P[3]), and TUCH (G3P[24]) were determined. These data allowed the genotype constellations of each virus to be determined and the phylogenetic relationships of the simian strains with each other and with nonsimian RVs to be elucidated. The results indicate that PTRV was likely transmitted from a bovine or other ruminant into pig-tailed macaques (its host of origin), since its genes have genotypes and encode outer-capsid proteins similar to those of bovine RVs. In contrast, most of the genes of rhesus-macaque strains, RRV and TUCH, have genotypes more typical of canine-feline RVs. However, the sequences of the canine and/or feline (canine/feline)-like genes of RRV and TUCH are only distantly related to those of modern canine/feline RVs, indicating that any potential transmission of a progenitor of these viruses from a canine/feline host to a simian host was not recent. The remaining genes of RRV and TUCH appear to have originated through reassortment with bovine, human, or other RV strains. Finally, comparison of PTRV, RRV, and TUCH genes with those of the vervet-monkey RV SA11-H96 (G3P[2]) indicates that SA11-H96 shares little genetic similarity to other simian strains and likely has evolved independently. Collectively, our data indicate that simian RVs are of diverse ancestry with genome constellations that originated largely by interspecies transmission and reassortment with nonhuman animal RVs.Group A rotaviruses (RVs) are a major cause of acute dehydrating diarrhea in infants and children under the age of 5 years worldwide. These infections lead to approximately 527,000 deaths each year, the vast majority occurring in developing countries (33). RVs are also responsible for gastroenteritis in many other animal species, notably mammals and birds (16, 38). RVs are members of the family Reoviridae and possess a genome consisting of 11 segments of double-stranded RNA (dsRNA). The prototypic genome of a group A RV encodes six structural proteins (VP) and six nonstructural proteins (NSP) (5). The mature RV virion is a nonenveloped triple-layered icosahedral particle. The inner most protein layer is formed by the core lattice protein VP2. Attached to the interior surface of the VP2 layer near the fivefold axes are complexes of the viral RNA-dependent RNA polymerase VP1 and the RNA capping enzyme VP3. Collectively, VP1, VP2, VP3, and the dsRNA genome form the core of the virion (5, 11). The core is surrounded by VP6, the sole constituent of the intermediate protein layer of the virion. The antigenic properties of VP6 are used in classifying RV isolates into groups. The outer protein layer of the virion is composed of trimers of the VP7 glycoprotein penetrated by spikes of the VP4 attachment protein (50). The properties of VP7 and VP4 form the basis of a dual classification system defining RV G types (glycosylated) and P types (protease sensitive), respectively. At present, 23 G genotypes and 31 P genotypes have been recognized in the literature based on sequence analyses (17, 39, 42, 45, 47). Recently, a comprehensive sequence-based classification system was established for the RVs which, together with a uniform nomenclature, allows each genome segment of the virus to be assigned to a particular genotype. In the comprehensive classification system, the acronym Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx defines the genotypes of VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 encoding genome segments (17, 18).Several years ago, Nakagomi et al. provided evidence by RNA-RNA hybridization assays that RVs originating from different animal species could be resolved into genogroups based upon the existence of unique species-specific genome constellations (29-31). More recently, the concept that RVs preferentially retain certain species-related genome constellations has been further supported by whole-genome sequencing (8, 24). For human RVs, two major genogroups (Wa-like genogroup 1 and DS-1-like genogroup 2) and one minor genogroup (AU-1-like genogroup 3) have been described (8, 17, 30). Although these genogroups are generally species specific, it is believed that the human AU-1 genogroup is of feline origin (31) and that the human Wa and DS-1 genogroups share common ancestor with porcine and bovine RVs, respectively (17). Another recent study based on full genome sequence data has indicated that the rarely seen human G3P[3] RVs are of feline or canine origin (46). Two additional sequence-based studies have indicated that human RVs with P[14] specificity may have originated after interspecies transmission from rabbit RVs and RVs from hosts belonging to the order Artiodactyla (i.e., hoofed mammals with even toes, including ruminants and pigs) (19, 20). These examples indicate that interspecies transmission of entire RV gene constellations from one host species to another may contribute significantly to viral evolution. In addition to interspecies transmission, complete genome sequencing of RVs have revealed multiple examples of naturally occurring inter- and intragenogroup reassortment (17, 19, 21-23, 37, 41).The simian RV strains, notably RRV and the SA11 derivatives (e.g., SA11-Cl3 and SA11-4F), have been used extensively as models in the study of all aspects of RV biology, including characterizing genome replication and virion assembly, delineating high-resolution structures of viral proteins and the virion capsid, and describing the functions of viral proteins. Moreover, the RRV strain was used to create a set of human-simian reassortant viruses that formed the basis of the first commercially licensed RV vaccine (Rotashield; Wyeth Laboratories) (10). Serological analyses have indicated that simian RVs are probably endemic in wild nonhuman primate (NHP) species in Africa (32). However, whether or not unique genogroups or preferred genome constellation exist for the simian RVs has not been determined, because of the lack of comprehensive genetic data. Most simian RVs isolated to date (e.g., rhesus macaque viruses RRV [43] and TUCH [25] and the pig-tailed macaque virus PTRV [9]) have been recovered from monkeys kept in captivity in the United States. An important exception is the SA11 isolate, which was recovered from a vervet monkey in South Africa (15). Simian RV infections occur mostly in young monkeys, similar to human RV infections in children (32, 40).To gain further insight into the origins and properties of simian RVs, we sequenced and contrasted the genomes of PTRV, RRV, and TUCH with other RVs, including SA11-H96 (G3P[2]), the only previously fully sequenced simian RV (41). Our results reveal that these four simian RVs are of divergent ancestry and have evolved by combinations of interspecies transmission and reassortment with RVs naturally occurring in other animal species. Thus, the simian RVs do not possess a common genome constellation nor define a unique genogroup. Although frequently used as disease models, the simian RVs show limited genetic similarity with the human RVs (genogroups 1 and 2) responsible for most human disease.  相似文献   

17.
Rotavirus (RV) is the major etiological agent of acute gastroenteritis in infants worldwide. Although high-pressure processing (HPP) is a popular method to inactivate enteric pathogens in food, the sensitivity of different virus strains within same species and serotype to HPP is variable. This study aimed to compare the barosensitivities of seven RV strains derived from four serotypes (serotype G1, strains Wa, Ku, and K8; serotype G2, strain S2; serotype G3, strains SA-11 and YO; and serotype G4, strain ST3) following high-pressure treatment. RV strains showed various responses to HPP based on the initial temperature and had different inactivation profiles. Ku, K8, S2, SA-11, YO, and ST3 showed enhanced inactivation at 4°C compared to 20°C. In contrast, strain Wa was not significantly impacted by the initial treatment temperature. Within serotype G1, strain Wa was significantly (P < 0.05) more resistant to HPP than strains Ku and K8. Overall, the resistance of the human RV strains to HPP at 4°C can be ranked as Wa > Ku = K8 > S2 > YO > ST3, and in terms of serotype the ranking is G1 > G2 > G3 > G4. In addition, pressure treatment of 400 MPa for 2 min was sufficient to eliminate the Wa strain, the most pressure-resistant RV, from oyster tissues. HPP disrupted virion structure but did not degrade viral protein or RNA, providing insight into the mechanism of viral inactivation by HPP. In conclusion, HPP is capable of inactivating RV at commercially acceptable pressures, and the efficacy of inactivation is strain dependent.  相似文献   

18.
19.
Examination of 1898 patients with acute enteric infection from March 2005 to February 2007 showed that group A rotaviruses were the most frequent cause (35%) of acute gastroenteritis among children under 3 years of age. Majority of cases of rotavirus infection was detected in infants under 1 year of age (71.8%). The peak of sporadic incidence was observed between February and May. High rate of mixed infection (45.6%) was observed - associations of rotaviruses with other viruses (noroviruses, astroviruses) and bacteria (Salmonella, Shigella, enteroinvasive Escherichia coli, Campylobacter, and opportunistic species) were detected. P- and G-genotypes of 337(50.8%) isolates of group A rotaviruses were determined by RT-PCR. The most prevalent strain was P[8]G1 (54.6%) followed by P[8]G3 (10.7%), P[8]G9 (8.6%), P[4]G2 (8.3%), and P[8]G4 (4.5%) genotypes.  相似文献   

20.
人轮状病毒NSP4基因变异与功能关系的初步研究   总被引:6,自引:0,他引:6  
在比较我国人A组轮状病毒一般腹泻患者分离株和重症患者分离株非结构蛋白(NSP)4 cDNA序列时发现,两者在可能与致病性有关的区域(aa131~146)内存在着显著的差异.为进一步探讨这种变异是否与毒力改变有关,利用杆状病毒表达载体在昆虫细胞Sf9中表达两种毒株的NSP4,通过激光扫描共聚焦显微镜初步观察了它对细胞内钙离子浓度的影响.结果表明:两种来源的NSP4均可使细胞内钙离子浓度明显升高,在48h时大致升高3.1~3.4倍,96h时升高5.6~5.8倍,但两种毒株之间的差别并不明显.研究证实,人轮状病毒NSP4与以往报道的动物轮状病毒NSP4一样,可以引起细胞内钙离子增高,即可能与病毒的致病性有关.但重症腹泻毒株SZ1 NSP4第131~146位氨基酸位点出现的变异并未提高其毒力.轮状病毒的毒力改变可能与其它因素有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号