Colorful visual signals are used across taxa to convey information during agonistic male‐male encounters, which are important for sexual selection. Although much is known about the information content of color signals, less is known about how receivers interpret this information. Here, using territorial Sceloporus undulatus lizards in a natural setting, we examined receiver response to intruders with different color patch sizes to determine (a) if patch size conveys information assessed during male‐male interactions and (b) if/how receivers modulate their behavioral responses to different types of behavioral signals. We found that larger lizards had longer and wider patches, indicating that the size of the patches may be one of the many characteristics of these patches that is used by males to convey information. Free‐ranging subject males also produced more headbob displays in response to intruders with small patches and took marginally longer to react to intruders with large patches. However, we found no differences in the aggressiveness of the response (i.e., fullshows). This indicates that patch size conveys information that is employed during territorial disputes, but that the response is primarily in terms of timing, allowing lizards to gather more information about intruders, instead of aggressive behavior (i.e., fullshows). 相似文献
We investigated the mechanism of coexistence of the rare Amani Sunbird (Hedydipna pallidigastra) and the widespread Collared Sunbird (H. collaris), within Brachystegia woodland in the Arabuko‐Sokoke Forest, Kenya. We compared how prey abundance and search strategies affect resource exploitation by the two species. We used foraging theory to direct our measures of feeding activities as influenced by sunbird species, tree species and foraging height. We evaluated invertebrate abundance among tree species at different heights within trees. The Collared Sunbird primarily used the understory, and the Amani Sunbird primarily used the upper‐canopy. Overall, the rate of prey attacks per flight of the Amani Sunbird was 2.8 times greater than that of the Collared Sunbird. The Amani Sunbird, however, used increased search and attack rates in the understory compared with the mid‐ and upper‐canopies, but the Collared Sunbird foraged similarly throughout all strata. We hypothesize that the increased foraging rate of the Amani in the understory reflects increased foraging costs due to interference from the Collared Sunbird in that stratum. Furthermore, the Collared Sunbird exploits rich patches by moving frequently from place to place. The Amani Sunbird forages slowly, with reduced travel rates, and with a greater number of prey captures within a patch. Arthropod density did not differ among the vegetative strata, but was higher in Brachystegia spiciformis and Hymenaea verrucosa than in six other tree species. We hypothesize that the Amani Sunbird appears dependent upon continued tall B. spiciformis trees within the canopy of the Arabuko‐Sokoke Forest. 相似文献
Drosophila larvae innately show light avoidance behavior. Compared with robust blue‐light avoidance, larvae exhibit relatively weaker green‐light responses. In our previous screening for genes involved in larval light avoidance, compared with control w1118 larvae, larvae with γ‐glutamyl transpeptidase 1 (Ggt‐1) knockdown or Ggt‐1 mutation were found to exhibit higher percentage of green‐light avoidance which was mediated by Rhodopsin6 (Rh6) photoreceptors. However, their responses to blue light did not change significantly. By adjusting the expression level of Ggt‐1 in different tissues, we found that Ggt‐1 in malpighian tubules was both necessary and sufficient for green‐light avoidance. Our results showed that glutamate levels were lower in Ggt‐1 null mutants compared with controls. Feeding Ggt‐1 null mutants glutamate can normalize green‐light avoidance, indicating that high glutamate concentrations suppressed larval green‐light avoidance. However, rather than directly, glutamate affected green‐light avoidance indirectly through GABA, the level of which was also lower in Ggt‐1 mutants compared with controls. Mutants in glutamate decarboxylase 1, which encodes GABA synthase, and knockdown lines of the GABAA receptor, both exhibit elevated levels of green‐light avoidance. Thus, our results elucidate the neurobiological mechanisms mediating green‐light avoidance, which was inhibited in wild‐type larvae.
Since the phenomenon of mimicry was first described by Bates in 1862 it has become one of the foundational examples of adaptive evolution. Numerous subcategories of mimicry and dozens of hypotheses pertaining to its evolution and maintenance have been proposed. Many of these hypotheses, however, are difficult to test in experimental settings, and data from natural observations are often inadequate. Here we use data from a long‐term survey of butterfly presence and abundance to test several hypotheses pertaining to Batesian and female‐limited polymorphic mimicry (FPM; a special case of Batesian mimicry). We found strong evidence that models outnumber mimics in both mimicry systems, but no evidence for an increase in relative abundance of FPM mimics to their Batesian counterparts. Tests of the early‐emergence/model first hypothesis showed strong evidence that the Batesian mimic routinely emerges after the model, while emergence timing in the FPM system was site specific, suggesting that other ecological factors are at play. These results demonstrate the importance of long‐term field observations for testing evolutionary and ecological hypotheses. 相似文献
Conspicuousness, or having high contrast relative to the surrounding background, is a common feature of unpalatable species. Several hypotheses have been proposed to explain the occurrence of conspicuousness, and while most involve the role of conspicuousness as a direct signal of unpalatability to potential predators, one hypothesis suggests that exaggerated conspicuousness may evolve in unpalatable species to reduce predator confusion with palatable species (potential Batesian mimics). This hypothesis of antagonistic coevolution between palatable and unpalatable species hinges on the ‘cost of conspicuousness’, in which conspicuousness increases the likelihood of predation more in palatable species than in unpalatable species. Under this mimicry scenario, four patterns are expected: (i) mimics will more closely resemble local models than models from other localities, (ii) there will be a positive relationship between mimic and model conspicuousness, (iii) models will be more conspicuous in the presence of mimics, and (iv) when models and mimics differ in conspicuousness, mimics will be less conspicuous than models. We tested these predictions in the salamander mimicry system involving Notophthalmus viridescens (model) and one colour morph of Plethodon cinereus (mimic). All predictions were supported, indicating that selection for Batesian mimicry not only influences the evolution of mimics, but also the evolution of the models they resemble. These findings indicate that mimicry plays a large role in the evolution of model warning signals, particularly influencing the evolution of conspicuousness. 相似文献
Attractive properties of pear ester, ethyl (E,Z)‐2,4‐decadienoate, and codlemone, (E,E)‐8,10‐dodecadien‐1‐ol, the sex pheromone of codling moth, Cydia pomonella (L.), were utilized in experiments on behavioural disruption of mating. Standard dispensers loaded with codlemone alone or in combination with pear ester (combo) were applied at 500–1000/ha. Larger (10‐fold) combo dispensers (Meso) were evaluated at a rate of 80/ha. The addition of microencapsulated pear ester, PE‐MEC, sprayed with insecticides at 30 ml/ha was also evaluated. Male moth catches in unmated female‐baited traps were lower in standard combo dispenser than in codlemone dispenser–treated plots. Female moth catch in traps baited with the combination of pear ester, codlemone and acetic acid was lower in standard combo dispenser than in codlemone dispenser–treated plots. In 12 comparative experiments spanning from 2006 to 2012, male moth catch in unmated female‐baited traps was consistently and significantly lower in combo than in codlemone dispenser–treated plots. Male catch in codlemone‐baited traps did not differ between dispenser treatments in eight studies from 2006 to 2009. These results emphasize the benefit of alternatively using traps baited with unmated females over codlemone lures for the analysis of dispenser activity. Fruit injury was significantly reduced with the addition of PE‐MEC to insecticide applications across untreated and dispenser treatments. Proportion of unmated females trapped was higher in standard combo dispenser than in codlemone dispenser–treated and untreated plots. Similarly, the proportion of unmated females caught was higher in the Meso combo dispenser than in nearby or distant codlemone dispenser–treated plots. These field studies conducted in apple over 3 years demonstrate that adding pear ester both to pheromone dispensers, either standard or Meso, and to supplementary insecticide sprays can provide a significant increase in the disruption of sexual communication, reductions in female mating and reductions in fruit injury. 相似文献
Microorganisms in insect guts have been recognized as having a great impact on their hosts' nutrition, health, and behavior. Spiders are important natural enemies of pests, and the composition of the gut microbiota of spiders remains unclear. Will the bacterial taxa in spiders be same as the bacterial taxa in insects, and what are the potential functions of the gut bacteria in spiders? To gain insight into the composition of the gut bacteria in spiders and their potential function, we collected three spider species, Pardosa laura, Pardosa astrigera, and Nurscia albofasciata, in the field, and high‐throughput sequencing of the 16S rRNA V3 and V4 regions was used to investigate the diversity of gut microbiota across the three spider species. A total of 23 phyla and 150 families were identified in these three spider species. The dominant bacterial phylum across all samples was Proteobacteria. Burkholderia, Ralstonia, Ochrobactrum, Providencia, Acinetobacter, Proteus, and Rhodoplanes were the dominant genera in the guts of the three spider species. The relative abundances of Wolbachia and Rickettsiella detected in N. albofasciata were significantly higher than those in the other two spider species. The relative abundance of Thermus, Amycolatopsis, Lactococcus, Acinetobacter Microbacterium, and Koribacter detected in spider gut was different among the three spider species. Biomolecular interaction networks indicated that the microbiota in the guts had complex interactions. The results of this study also suggested that at the genus level, some of the gut bacteria taxa in the three spider species were the same as the bacteria in insect guts. 相似文献
Montane species endemic to the “sky islands” of the North American southwest were significantly impacted by changing climates during the Pleistocene. We combined mitochondrial and genomic data with species distribution modelling to determine whether Aphonopelma marxi, a large tarantula from the nearby Colorado Plateau, was similarly impacted by glacial climates. Genetic analyses revealed that the species comprises three main clades that diverged in the Pleistocene. A clade distributed along the Mogollon Rim appears to have persisted in place during glacial conditions, whereas the other two clades probably colonized central and northeastern portions of the species' range from refugia in canyons. Climate models support this hypothesis for the Mogollon Rim, but late glacial climate data appear too coarse to detect suitable areas in canyons. Locations of canyon refugia could not be inferred from genomic analyses due to missing data, encouraging us to explore the effect of missing loci in phylogeographical inferences using RADseq. Results from analyses with varying amounts of missing data suggest that samples with large amounts of missing data can still improve inferences, and the specific loci that are missing matters more than the number of missing loci. This study highlights the profound impact of Pleistocene climates on tarantulas endemic to the Colorado Plateau, as well as the mixed nature of the region's fauna. Some animals recently colonized from nearby deserts as glacial climates receded, whereas others, like tarantulas, appear to have persisted on the Mogollon Rim and in refugia associated with the region's famous river‐cut canyons. 相似文献
Mit mutations that disrupt function of the mitochondrial electron transport chain can, inexplicably, prolong Caenorhabditis elegans lifespan. In this study we use a metabolomics approach to identify an ensemble of mitochondrial‐derived α‐ketoacids and α‐hydroxyacids that are produced by long‐lived Mit mutants but not by other long‐lived mutants or by short‐lived mitochondrial mutants. We show that accumulation of these compounds is dependent on concerted inhibition of three α‐ketoacid dehydrogenases that share dihydrolipoamide dehydrogenase (DLD) as a common subunit, a protein previously linked in humans with increased risk of Alzheimer's disease. When the expression of DLD in wild‐type animals was reduced using RNA interference we observed an unprecedented effect on lifespan – as RNAi dosage was increased lifespan was significantly shortened, but, at higher doses, it was significantly lengthened, suggesting that DLD plays a unique role in modulating length of life. Our findings provide novel insight into the origin of the Mit phenotype. 相似文献
Butterflies have evolved a diversity of color patterns, but the ecological functions for most of these patterns are still poorly understood. The Banded Swallowtail butterfly, Papilio demolion demolion, is a mostly black butterfly with a greenish‐blue band that traverses the wings. The function of this wing pattern remains unknown. Here, we examined the morphology of black and green‐blue colored scales, and how the color and banding pattern affects predation risk in the wild. The protective benefits of the transversal band and of its green‐blue color were tested via the use of paper model replicas of the Banded Swallowtail with variations in band shape and band color in a full factorial design. A variant model where the continuous transversal green‐blue band was shifted and made discontinuous tested the protective benefit of the transversal band, while grayscale variants of the wildtype and distorted band models assessed the protective benefit of the green‐blue color. Paper models of the variants and the wildtype were placed simultaneously in the field with live baits. Wildtype models were the least preyed upon compared with all other variants, while gray models with distorted bands suffered the greatest predation. The color and the continuous band of the Banded Swallowtail hence confer antipredator qualities. We propose that the shape of the band hinders detection of the butterfly's true shape through coincident disruptive coloration; while the green color of the band prevents detection of the butterfly from its background via differential blending. Differential blending is aided by the green‐blue color being due to pigments rather than via structural coloration. Both green and black scales have identical structures, and the scales follow the Bauplan of pigmented scales documented in other Papilio butterflies. 相似文献
Chacma baboons (Papio ursinus) intentionally overturn rocks to feed on the invertebrates beneath. However, baboons do not move all the rocks they encounter, with this presumably reflecting cost–benefit (or effort–reward) trade‐offs in their foraging behavior. We ask, how do “clever baboons” choose rock sizes and shapes and move these rocks? Using optimal foraging theory, we predicted that baboons would prefer to move medium‐sized rocks, a trade‐off between moving larger rocks that might require more effort to move, and smaller rocks that likely do not provide enough prey (the reward) to make the effort worthwhile. We also expected baboons to prefer rounded rocks as these will require less energy to move by rolling (rather than being flipped as for flat rocks) and that the effort of rock movement might be offset by moving rocks along the shortest axis. We show that baboons have clear preferences for specific rock sizes (medium‐sized) and shapes (angular and flat when these were medium‐sized), and the way in which rocks are moved (along the shortest axis). Prey occurred infrequently under rocks. The low predictability of prey beneath rocks suggests that such prey, when encountered, is of considerable value to baboons for them to expend the search effort, and also explains the extensive nature of rock movement by baboons in the landscape. Our study provides a novel application of the optimal foraging theory concept and has important implications for understanding and predicting how animals choose to move rocks. 相似文献
Batesian mimicry has been repeatedly reported in syrphid flies (Diptera: Syrphidae), with noxious Hymenoptera identified as the models, including bumblebees (Hymenoptera: Aculeata). Despite the number of detailed studies of bumblebee mimics from the Holarctic, only minimal biological and ecological information is available for the same phenomenon in most other biogeographical regions.
Here, we analyse in detail a case of Batesian mimicry by the syrphid fly Aneriophora aureorufa Philippi towards the bumblebee Bombus dahlbomii Guérin from Patagonia, a relationship only briefly noted previously in taxonomic studies. A. aureorufa possesses strikingly similar red tawny colouration to the highly hairy body of its model, and somewhat resembles it also in size. Cluster analysis suggests that the mimicry is more pronounced towards larger rather than smaller bumblebee workers.
The mimicry is visually very good, but there was no evidence of a behavioural component. Foraging activity of both species seems to be largely restricted to the endemic plant Eucryphia cordifolia. The time spent on flowers was much higher in syrphid flies than in B. dahlbomii and other pollinators, and the time spent between flower visits largely overlapped between all the tested species.
The endemic distribution, the apparent plant specialisation, and the invasion of alien bumblebees, make B. dahlbomii and A. aureorufa potentially threatened in some parts of the austral American forests, a priority conservation area.
The Catharanthus roseus Receptor‐Like Kinase 1‐like (CrRLK1L) family of 17 receptor‐like kinases (RLKs) has been implicated in a variety of signaling pathways in Arabidopsis, ranging from pollen tube (PT) reception and tip growth to hormonal responses. The extracellular domains of these RLKs have malectin‐like domains predicted to bind carbohydrate moieties. Domain swap analysis showed that the extracellular domains of the three members analyzed (FER, ANX1, HERK1) are not interchangeable, suggesting distinct upstream components, such as ligands and/or co‐factors. In contrast, their intercellular domains are functionally equivalent for PT reception, indicating that they have common downstream targets in their signaling pathways. The kinase domain is necessary for FER function, but kinase activity itself is not, indicating that other kinases may be involved in signal transduction during PT reception. 相似文献
Coloration in birds can act as an important sexual signal in males, yet in many species, both sexes display bright colors. Social selection may account for this pattern, with more brightly colored individuals pairing together on the best territories. Mutual mate choice may also explain this, as males investing a great deal of parental care in the offspring should be choosy about their social mates. It is less clear whether this pattern of mate choice can apply to extra‐pair partners as well. We examined western bluebirds (Sialia mexicana) to determine whether more colorful individuals tended to pair with one another, both in social pairs and between females and their extra‐pair partners. Both male and female western bluebirds display both UV‐blue structural plumage and a melanin‐based chestnut breast patch, although females are duller than males. Social pairs mated assortatively with regard to UV‐blue brightness, but not chestnut coloration. There was no evidence that extra‐pair partners mated assortatively, but males with brighter UV‐blue coloration had fewer extra‐pair offspring in their nests. Older males were more successful at siring extra‐pair offspring, despite displaying no differences in coloration compared to younger males. Coloration did not play a role in determining extra‐pair male success. These results suggest that coloration plays a role in the formation of social pairs, but not mate choice for extra‐pair partners. 相似文献
Plants are under constant attack from a variety of disease‐causing organisms. Lacking an adaptive immune system, plants repel pathogen attack via an array of pathogen recognition machinery. Receptor‐like kinases (RLKs) are involved in the recognition of pathogen‐associated molecular patterns (PAMPs) and activate resistance pathways against broad classes of pathogens. We have identified powdery mildew‐resistant kinase 1, an Arabidopsis gene encoding an RLK that is highly induced by chitin at early time points and localizes to the plasma membrane. Knockout mutants in pmrk1 are more susceptible to both Golovinomyces cichoracearum and Plectosphaerella cucumerina. Our data show that PMRK1 is essential in early stages of defence against fungi and provide evidence that PMRK1 may be unique to chitin‐induced signalling pathways. The results of this study indicate that PMRK1 is a critical component of plant innate immunity against fungal pathogens. 相似文献