首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ubiquitin-like, containing PHD and RING finger domains protein 1 (UHRF1) is essential for maintenance DNA methylation by DNA methyltransferase 1 (DNMT1). UHRF1 has been shown to recruit DNMT1 to replicated DNA by the ability of its SET and RING-associated (SRA) domain to bind to hemimethylated DNA. Here, we demonstrate that UHRF1 also increases the activity of DNMT1 by almost 5-fold. This stimulation is mediated by a direct interaction of both proteins through the SRA domain of UHRF1 and the replication focus targeting sequence domain of DNMT1, and it does not require DNA binding by the SRA domain. Disruption of the interaction between DNMT1 and UHRF1 by replacement of key residues in the replication focus targeting sequence domain led to a strong reduction of DNMT1 stimulation. Additionally, the interaction with UHRF1 increased the specificity of DNMT1 for methylation of hemimethylated CpG sites. These findings show that apart from the targeting of DNMT1 to the replicated DNA UHRF1 increases the activity and specificity of DNMT1, thus exerting a multifaceted influence on the maintenance of DNA methylation.  相似文献   

2.
In the cell, Dnmt1 is the major enzyme in maintenance of the pattern of DNA methylation after DNA replication. Evidence suggests that the protein is located at the replication fork, where it could directly modify nascent DNA immediately after replication. To elucidate the potential mechanism of this process, we investigate the processivity of DNA methylation and accuracy of copying an existing pattern of methylation in this study using purified Dnmt1 and hemimethylated substrate DNA. We demonstrate that Dnmt1 methylates a hemimethylated 958-mer substrate in a highly processive reaction. Fully methylated and unmethylated CG sites do not inhibit processive methylation of the DNA. Extending previous work, we show that unmethylated sites embedded in a hemimethylated context are modified at an approximately 24-fold reduced rate, which demonstrates that the enzyme accurately copies existing patterns of methylation. Completely unmodified DNA is methylated even more slowly due to an allosteric activation of Dnmt1 by methylcytosine-containing DNA. Interestingly, Dnmt1 is not able to methylate hemimethylated CG sites on different strands of the DNA in a processive manner, indicating that Dnmt1 keeps its orientation with respect to the DNA while methylating the CG sites on one strand of the DNA.  相似文献   

3.
We have determined the DNA renaturation kinetics for those DNA sequences of the Chinese hamster ovary (CHO-K1) cells in which enzymatic cytosine methylation occurred immediately after strand synthesis and for those in which methylation was delayed after strand synthesis. DNA sequences showing immediate or delayed methylation were found to be distributed throughout all repetition classes of the DNA of these cells, with a slight concentration of immediate methylation in moderately repetitive sequences and with delayed methylation being slightly over-represented in the highly repetitive fraction. However, DNA sequences showing both classes of methylation were represented equally in unique DNA sequences. We interpret these data to mean that the methylase acting near the replication forks (the ‘immediate’ methylase) is a relatively inefficient enzyme, missing some 20% of hemimethylated sites produced by DNA replication in these cells. We suggest that the methylase performing maintenance methylation at sites remote from the replication forks (the ‘delayed’ methylase) is simply a back-up enzyme for the first and that it has no true sequence specificity. The implications of this for the function(s) of DNA methylation in mammalian cells are discussed.  相似文献   

4.
DNMT1 is recruited by PCNA and UHRF1 to maintain DNA methylation after replication. UHRF1 recognizes hemimethylated DNA substrates via the SRA domain, but also repressive H3K9me3 histone marks with its TTD. With systematic mutagenesis and functional assays, we could show that chromatin binding further involved UHRF1 PHD binding to unmodified H3R2. These complementation assays clearly demonstrated that the ubiquitin ligase activity of the UHRF1 RING domain is required for maintenance DNA methylation. Mass spectrometry of UHRF1-deficient cells revealed H3K18 as a novel ubiquitination target of UHRF1 in mammalian cells. With bioinformatics and mutational analyses, we identified a ubiquitin interacting motif (UIM) in the N-terminal regulatory domain of DNMT1 that binds to ubiquitinated H3 tails and is essential for DNA methylation in vivo. H3 ubiquitination and subsequent DNA methylation required UHRF1 PHD binding to H3R2. These results show the manifold regulatory mechanisms controlling DNMT1 activity that require the reading and writing of epigenetic marks by UHRF1 and illustrate the multifaceted interplay between DNA and histone modifications. The identification and functional characterization of the DNMT1 UIM suggests a novel regulatory principle and we speculate that histone H2AK119 ubiquitination might also lead to UIM-dependent recruitment of DNMT1 and DNA methylation beyond classic maintenance.  相似文献   

5.
DNA topoisomerase II (TopoII) regulates DNA topology by its strand passaging reaction, which is required for genome maintenance by resolving tangled genomic DNA. In addition, TopoII contributes to the structural integrity of mitotic chromosomes and to the activation of cell cycle checkpoints in mitosis. Post-translational modification of TopoII is one of the key mechanisms by which its broad functions are regulated during mitosis. SUMOylation of TopoII is conserved in eukaryotes and plays a critical role in chromosome segregation. Using Xenopus laevis egg extract, we demonstrated previously that TopoIIα is modified by SUMO on mitotic chromosomes and that its activity is modulated via SUMOylation of its lysine at 660. However, both biochemical and genetic analyses indicated that TopoII has multiple SUMOylation sites in addition to Lys660, and the functions of the other SUMOylation sites were not clearly determined. In this study, we identified the SUMOylation sites on the C-terminal domain (CTD) of TopoIIα. CTD SUMOylation did not affect TopoIIα activity, indicating that its function is distinct from that of Lys660 SUMOylation. We found that CTD SUMOylation promotes protein binding and that Claspin, a well-established cell cycle checkpoint mediator, is one of the SUMOylation-dependent binding proteins. Claspin harbors 2 SUMO-interacting motifs (SIMs), and its robust association to mitotic chromosomes requires both the SIMs and TopoIIα-CTD SUMOylation. Claspin localizes to the mitotic centromeres depending on mitotic SUMOylation, suggesting that TopoIIα-CTD SUMOylation regulates the centromeric localization of Claspin. Our findings provide a novel mechanistic insight regarding how TopoIIα-CTD SUMOylation contributes to mitotic centromere activity.  相似文献   

6.
DNA methylation serves as the principal form of post-replicative epigenetic modification. It is intricately involved in gene regulation and silencing in eukaryotic cells, making significant contributions to cell phenotype. Much of it is mitotically inherited; some is passed on from one filial generation to the next. Establishment and maintenance of DNA methylation patterns in mammals is governed by three catalytically active DNA methyltransferases – DNMT3a, DNMT3b and DNMT1. While the first two are responsible mainly for de novo methylation, DNMT1 maintains the methylation patterns by preferentially catalyzing S-adenosyl methionine-dependant transfer of a methyl group to cytosine at hemimethylated CpG sites generated as a result of semi-conservative DNA replication. DNMT1 contains numerous regulatory domains that fine-tune associated catalytic activities, deregulation of which is observed in several diseases including cancer. In this minireview, we analyze the regulatory mechanisms of various sub-domains of DNMT1 protein and briefly discuss its pathophysiological and pharmacological implications. A better understanding of DNMT1 function and structure will likely reveal new applications in the treatment of associated diseases.  相似文献   

7.
DNA methylation is an epigenetic modification of DNA. There are currently three catalytically active mammalian DNA methyltransferases, DNMT1, -3a, and -3b. DNMT1 has been shown to have a preference for hemimethylated DNA and has therefore been termed the maintenance methyltransferase. Although previous studies on DNMT3a and -3b revealed that they act as functional enzymes during development, there is little biochemical evidence about how new methylation patterns are established and maintained. To study this mechanism we have cloned and expressed Dnmt3a using a baculovirus expression system. The substrate specificity of Dnmt3a and molecular mechanism of its methylation reaction were then analyzed using a novel and highly reproducible assay. We report here that Dnmt3a is a true de novo methyltransferase that prefers unmethylated DNA substrates more than 3-fold to hemimethylated DNA. Furthermore, Dnmt3a binds DNA nonspecifically, regardless of the presence of CpG dinucleotides in the DNA substrate. Kinetic analysis supports an Ordered Bi Bi mechanism for Dnmt3a, where DNA binds first, followed by S-adenosyl-l-methionine.  相似文献   

8.
DNA methylation is a major determinant of epigenetic inheritance and plays an important role in genome stability. The accurate propagation of DNA methylation patterns with cell division requires that methylation be closely coupled to DNA replication, however the precise molecular determinants of this interaction have not been defined. In the present study, we show that the predominant DNA methyltransferase species in somatic cells, DNMT1, is a component of a multiprotein DNA replication complex termed the DNA synthesome that fully supports semi-conservative DNA replication in a cell-free system. DNMT1 protein and activity were found to co-purify with the human DNA synthesome through a series of subcellular fractionation and chromatography steps, resulting in an enrichment of methyltransferase specific activity from two human cell lines. DNA methyltransferase activity co-eluted with in vitro replication activity and DNA polymerase alpha activity on sucrose density gradients suggesting that DNMT1 is a tightly bound, core component of the replication complex. The synthesome-associated pool of DNA methyltransferase exhibited both maintenance and de novo methyltransferase activity and the ratio of the two was similar to that observed in whole cell lysates and for recombinant DNMT1. These data indicate that interactions within the synthesome complex do not influence the intrinsic preference of DNMT1 for hemimethylated DNA, but suggest that newly replicated DNA may be subject to low level de novo methylation. The data indicate that DNA methylation is tightly coupled to replication through physical interaction of DNMT1 and core components of the replication machinery. The definition of the molecular interactions between DNMT1 and other proteins in the replication complex in normal and neoplastic cells will provide further insight into the regulation of DNA methylation and the mechanisms underlying the alteration of DNA methylation patterns during carcinogenesis.  相似文献   

9.
DNA methylation is an important epigenetic mechanism involved in gene expression of vertebrates and invertebrates. In general, DNA methylation profile is established by de novo DNA methyltransferases (DNMT-3A, -3B) and maintainance DNA methyltransferase (DNMT-1). DNMT-1 has a strong substrate preference for hemimethylated DNA over the unmethylated one. Because the silkworm genome lacks an apparent homologue of de novo DNMT, it is still unclear that how silkworm chromosome establishes and maintains its DNA methylation profile. As the first step to unravel this enigma, we purified recombinant BmDNMT-1 using baculovirus expression system and characterized its DNA-binding and DNA methylation activity. We found that the BmDNMT-1 preferentially methylates hemimethylated DNA despite binding to both unmethylated and hemimethylated DNA. Interestingly, BmDNMT-1 formed a complex with DNA in the presence or absence of methyl group donor, S-Adenosylmethionine (AdoMet) and the AdoMet-dependent complex formation was facilitated by Zn2+ and Mn2+. Our results provide clear evidence that BmDNMT-1 retained the function as maintenance DNMT but its sensitivity to metal ions is different from mammalian DNMT-1.  相似文献   

10.
DNA methyltransferase Dnmt1 ensures clonal transmission of lineage-specific DNA methylation patterns in a mammalian genome during replication. Dnmt1 is targeted to replication foci, interacts with PCNA, and favors methylating the hemimethylated form of CpG sites. To understand the underlying mechanism of its maintenance function, we purified recombinant forms of full-length Dnmt1, a truncated form of Dnmt1-(291-1620) lacking the binding sites for PCNA and DNA and examined their processivity using a series of long unmethylated and hemimethylated DNA substrates. Direct analysis of methylation patterns using bisulfite-sequencing and hairpin-PCR techniques demonstrated that full-length Dnmt1 methylates hemimethylated DNA with high processivity and a fidelity of over 95%, but unmethylated DNA with much less processivity. The truncated form of Dnmt1 showed identical properties to full-length Dnmt1 indicating that the N-terminal 290-amino acid residue region of Dnmt1 is not required for preferential activity toward hemimethylated sites or for processivity of the enzyme. Remarkably, our analyses also revealed that Dnmt1 methylates hemimethylated CpG sites on one strand of double-stranded DNA during a single processive run. Our findings suggest that these inherent enzymatic properties of Dnmt1 play an essential role in the faithful and efficient maintenance of methylation patterns in the mammalian genome.  相似文献   

11.
DNA methylation is a major determinant of epigenetic inheritance and plays an important role in genome stability. The accurate propagation of DNA methylation patterns with cell division requires that methylation be closely coupled to DNA replication, however the precise molecular determinants of this interaction have not been defined. In the present study, we show that the predominant DNA methyltransferase species in somatic cells, DNMT1, is a component of a multiprotein DNA replication complex termed the DNA synthesome that fully supports semi-conservative DNA replication in a cell-free system. DNMT1 protein and activity were found to co-purify with the human DNA synthesome through a series of subcellular fractionation and chromatography steps, resulting in an enrichment of methyltransferase specific activity from two human cell lines. DNA methyltransferase activity co-eluted with in vitro replication activity and DNA polymerase a activity on sucrose density gradients suggesting that DNMT1 is a tightly bound, core component of the replication complex. The synthesome-associated pool of DNA methyltransferase exhibited both maintenance and de novo methyltransferase activity and the ratio of the two was similar to that observed in whole cell lysates and for recombinant DNMT1. These data indicate that interactions within the synthesome complex do not influence the intrinsic preference of DNMT1 for hemimethylated DNA, but suggest that newly replicated DNA may be subject to low level de novo methylation. The data indicate that DNA methylation is tightly coupled to replication through physical interaction of DNMT1 and core components of the replication machinery. The definition of the molecular interactions between DNMT1 and other proteins in the replication complex in normal and neoplastic cells will provide further insight into the regulation of DNA methylation and the mechanisms underlying the alteration of DNA methylation patterns during carcinogenesis.  相似文献   

12.
Caulobacter crescentus exhibits cell-type-specific control of chromosome replication and DNA methylation. Asymmetric cell division yields a replicating stalked cell and a nonreplicating swarmer cell. The motile swarmer cell must differentiate into a sessile stalked cell in order to replicate and execute asymmetric cell division. This program of cell division implies that chromosome replication initiates in the stalked cell only once per cell cycle. DNA methylation is restricted to the predivisional cell stage, and since DNA synthesis produces an unmethylated nascent strand, late DNA methylation also implies that DNA near the replication origin remains hemimethylated longer than DNA located further away. In this report, both assumptions are tested with an engineered Tn5-based transposon, Tn5Omega-MP. This allows a sensitive Southern blot assay that measures fully methylated, hemimethylated, and unmethylated DNA duplexes. Tn5Omega-MP was placed at 11 sites around the chromosome and it was clearly demonstrated that Tn5Omega-MP DNA near the replication origin remained hemimethylated longer than DNA located further away. One Tn5Omega-MP placed near the replication origin revealed small but detectable amounts of unmethylated duplex DNA in replicating stalked cells. Extra DNA synthesis produces a second unmethylated nascent strand. Therefore, measurement of unmethylated DNA is a critical test of the "once and only once per cell cycle" rule of chromosome replication in C. crescentus. Fewer than 1 in 1,000 stalked cells prematurely initiate a second round of chromosome replication. The implications for very precise negative control of chromosome replication are discussed with respect to the bacterial cell cycle.  相似文献   

13.
DNA methyltransferase-1 (DNMT1) has a higher specific activity on hemimethylated DNA than on unmethylated DNA, but this preference is too small to explain the faithful mitotic inheritance of genomic methylation patterns. New genetic studies in plants and mammals have identified a novel factor that increases the fidelity of maintenance methylation.  相似文献   

14.
15.
16.
Expansion of CAG/CTG trinucleotide repeats causes certain familial neurological disorders. Hairpin formation in the nascent strand during DNA synthesis is considered a major path for CAG/CTG repeat expansion. However, the underlying mechanism is unclear. We show here that removal or retention of a nascent strand hairpin during DNA synthesis depends on hairpin structures and types of DNA polymerases. Polymerase (pol) δ alone removes the 3′-slipped hairpin using its 3′-5′ proofreading activity when the hairpin contains no immediate 3′ complementary sequences. However, in the presence of pol β, pol δ preferentially facilitates hairpin retention regardless of hairpin structures. In this reaction, pol β incorporates several nucleotides to the hairpin 3′-end, which serves as an effective primer for the continuous DNA synthesis by pol δ, thereby leading to hairpin retention and repeat expansion. These findings strongly suggest that coordinated processing of 3′-slipped (CAG)n/(CTG)n hairpins by polymerases δ and β on during DNA synthesis induces CAG/CTG repeat expansions.  相似文献   

17.
Zhang J  Gao Q  Li P  Liu X  Jia Y  Wu W  Li J  Dong S  Koseki H  Wong J 《Cell research》2011,21(12):1723-1739
Recent studies demonstrate that UHRF1 is required for DNA methylation maintenance by targeting DNMT1 to DNA replication foci, presumably through its unique hemi-methylated DNA-binding activity and interaction with DNMT1. UHRF2, another member of the UHRF family proteins, is highly similar to UHRF1 in both sequence and structure, raising questions about its role in DNA methylation. In this study, we demonstrate that, like UHRF1, UHRF2 also binds preferentially to methylated histone H3 lysine 9 (H3K9) through its conserved tudor domain and hemi-methylated DNA through the SET and Ring associated domain. Like UHRF1, UHRF2 is enriched in pericentric heterochromatin. The heterochromatin localization depends to large extent on its methylated H3K9-binding activity and to less extent on its methylated DNA-binding activity. Coimmunoprecipitation experiments demonstrate that both UHRF1 and UHRF2 interact with DNMT1, DNMT3a, DNMT3b and G9a. Despite all these conserved functions, we find that UHRF2 is not able to rescue the DNA methylation defect in Uhrf1 null mouse embryonic stem cells. This can be attributed to the inability for UHRF2 to recruit DNMT1 to replication foci during S phase of the cell cycle. Indeed, we find that while UHRF1 interacts with DNMT1 in an S phase-dependent manner in cells, UHRF2 does not. Thus, our study demonstrates that UHRF2 and UHRF1 are not functionally redundant in DNA methylation maintenance and reveals the cell-cycle-dependent interaction between UHRF1 and DNMT1 as a key regulatory mechanism targeting DNMT1 for DNA methylation.  相似文献   

18.
Genome-wide DNA methylation patterns are frequently deregulated in cancer. There is considerable interest in targeting the methylation machinery in tumor cells using nucleoside analogs of cytosine, such as 5-aza-2′-deoxycytidine (5-azadC). 5-azadC exerts its antitumor effects by reactivation of aberrantly hypermethylated growth regulatory genes and cytoxicity resulting from DNA damage. We sought to better characterize the DNA damage response of tumor cells to 5-azadC and the role of DNA methyltransferases 1 and 3B (DNMT1 and DNMT3B, respectively) in modulating this process. We demonstrate that 5-azadC treatment results in growth inhibition and G2 arrest—hallmarks of a DNA damage response. 5-azadC treatment led to formation of DNA double-strand breaks, as monitored by formation of γ-H2AX foci and comet assay, in an ATM (ataxia-telangiectasia mutated)-dependent manner, and this damage was repaired following drug removal. Further analysis revealed activation of key strand break repair proteins including ATM, ATR (ATM-Rad3-related), checkpoint kinase 1 (CHK1), BRCA1, NBS1, and RAD51 by Western blotting and immunofluorescence. Significantly, DNMT1-deficient cells demonstrated profound defects in these responses, including complete lack of γ-H2AX induction and blunted p53 and CHK1 activation, while DNMT3B-deficient cells generally showed mild defects. We identified a novel interaction between DNMT1 and checkpoint kinase CHK1 and showed that the defective damage response in DNMT1-deficient cells is at least in part due to altered CHK1 subcellular localization. This study therefore greatly enhances our understanding of the mechanisms underlying 5-azadC cytotoxicity and reveals novel functions for DNMT1 as a component of the cellular response to DNA damage, which may help optimize patient responses to this agent in the future.  相似文献   

19.
Polymerase δ is widely accepted as the lagging strand replicative DNA polymerase in eukaryotic cells. It forms a replication complex in the presence of replication factor C and proliferating cell nuclear antigen to perform efficient DNA synthesis in vivo. In this study, the human lagging strand holoenzyme was reconstituted in vitro. The rate of DNA synthesis of this holoenzyme, measured with a singly primed ssM13 DNA substrate, is 4.0 ± 0.4 nucleotides. Results from adenosine 5′-(3-thiotriphosphate) tetralithium salt (ATPγS) inhibition experiments revealed the nonprocessive characteristic of the human DNA polymerase (Pol δ) holoenzyme (150 bp for one binding event), consistent with data from chase experiments with catalytically inactive mutant Pol δAA. The ATPase activity of replication factor C was characterized and found to be stimulated ∼10-fold in the presence of both proliferating cell nuclear antigen and DNA, but the activity was not shut down by Pol δ in accord with rapid association/dissociation of the holoenzyme to/from DNA. It is noted that high concentrations of ATP inhibit the holoenzyme DNA synthesis activity, most likely due to its inhibition of the clamp loading process.  相似文献   

20.
The enzyme responsible for maintenance methylation of CpG dinucleotides in vertebrates is DNMT1. The presence of DNMT1 in DNA replication foci raises the issue of whether this enzyme needs to gain access to nascent DNA before its packaging into nucleosomes, which occurs very rapidly behind the replication fork. Using nucleosomes positioned along the 5 S rRNA gene, we find that DNMT1 is able to methylate a number of CpG sites even when the DNA major groove is oriented toward the histone surface. However, we also find that the ability of DNMT1 to methylate nucleosomal sites is highly dependent on the nature of the DNA substrate. Although nucleosomes containing the Air promoter are refractory to methylation irrespective of target cytosine location, nucleosomes reconstituted onto the H19 imprinting control region are more accessible. These results argue that although DNMT1 is intrinsically capable of methylating some DNA sequences even after their packaging into nucleosomes, this is not the case for at least a fraction of DNA sequences whose function is regulated by DNA methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号