共查询到20条相似文献,搜索用时 15 毫秒
1.
Yasuko Ono Koichi Ojima Fukuyo Torii Emi Takaya Naoko Doi Kazuhiro Nakagawa Shoji Hata Keiko Abe Hiroyuki Sorimachi 《The Journal of biological chemistry》2010,285(30):22986-22998
Because intracellular [Na+] is kept low by Na+/K+-ATPase, Na+ dependence is generally considered a property of extracellular enzymes. However, we found that p94/calpain 3, a skeletal-muscle-specific member of the Ca2+-activated intracellular “modulator proteases” that is responsible for a limb-girdle muscular dystrophy (“calpainopathy”), underwent Na+-dependent, but not Cs+-dependent, autolysis in the absence of Ca2+. Furthermore, Na+ and Ca2+ complementarily activated autolysis of p94 at physiological concentrations. By blocking Na+/K+-ATPase, we confirmed intracellular autolysis of p94 in cultured cells. This was further confirmed using inactive p94:C129S knock-in (p94CS-KI) mice as negative controls. Mutagenesis studies showed that much of the p94 molecule contributed to its Na+/Ca2+-dependent autolysis, which is consistent with the scattered location of calpainopathy-associated mutations, and that a conserved Ca2+-binding sequence in the protease acted as a Na+ sensor. Proteomic analyses using Cs+/Mg2+ and p94CS-KI mice as negative controls revealed that Na+ and Ca2+ direct p94 to proteolyze different substrates. We propose three roles for Na+ dependence of p94; 1) to increase sensitivity of p94 to changes in physiological [Ca2+], 2) to regulate substrate specificity of p94, and 3) to regulate contribution of p94 as a structural component in muscle cells. Finally, this is the first example of an intracellular Na+-dependent enzyme. 相似文献
2.
Jaakko Sarparanta Ga?lle Blandin Karine Charton Anna Vihola Sylvie Marchand Astrid Milic Peter Hackman Elisabeth Ehler Isabelle Richard Bjarne Udd 《The Journal of biological chemistry》2010,285(39):30304-30315
Mutations in the C terminus of titin, situated at the M-band of the striated muscle sarcomere, cause tibial muscular dystrophy (TMD) and limb-girdle muscular dystrophy (LGMD) type 2J. Mutations in the protease calpain 3 (CAPN3), in turn, lead to LGMD2A, and secondary CAPN3 deficiency in LGMD2J suggests that the pathomechanisms of the diseases are linked. Yeast two-hybrid screens carried out to elucidate the molecular pathways of TMD/LGMD2J and LGMD2A resulted in the identification of myospryn (CMYA5, cardiomyopathy-associated 5) as a binding partner for both M-band titin and CAPN3. Additional yeast two-hybrid and coimmunoprecipitation studies confirmed both interactions. The interaction of myospryn and M-band titin was supported by localization of endogenous and transfected myospryn at the M-band level. Coexpression studies showed that myospryn is a proteolytic substrate for CAPN3 and suggested that myospryn may protect CAPN3 from autolysis. Myospryn is a muscle-specific protein of the tripartite motif superfamily, reported to function in vesicular trafficking and protein kinase A signaling and implicated in the pathogenesis of Duchenne muscular dystrophy. The novel interactions indicate a role for myospryn in the sarcomeric M-band and may be relevant for the molecular pathomechanisms of TMD/LGMD2J and LGMD2A. 相似文献
3.
4.
钙调素(Calmodulin,简称CaM)是一种多生理功能的调节蛋白,在脑的功能活动中有重要作用。本文采用苯基琼脂糖(phenyl-Sepharose CL 4B)层析和葡聚糖凝胶(Sephadex G-50)过滤法,从北京鸭脑中分离纯化出CaM。纯化的CaM经SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)和等电聚焦(IEF)电泳鉴定均为一条区带。分子量为19kD,等电点(pI)为4.15,消光系数为1.83。 对纯化的鸭脑CaM的活性和性质进行了研究。它可明显地激活牛环核苷酸磷酸二酯酶活性,在有Ca~(2+)存在的条件下,SDS-PAGE中出现电泳迁移速度的改变,紫外吸收光谱具有已知CaM特有的吸收多峰形,并观察了Ca~(2+)对荧光发射光谱的影响。其氨基酸组成中,1/3是酸性氨基酸,苯丙氨酸和酪氨酸的比例为8:2。与猪CaM和牛CaM的物理化学性质作了比较。 相似文献
5.
Frances J. Evesson Rachel A. Peat Angela Lek Fabienne Brilot Harriet P. Lo Russell C. Dale Robert G. Parton Kathryn N. North Sandra T. Cooper 《The Journal of biological chemistry》2010,285(37):28529-28539
Ferlins are an ancient family of C2 domain-containing proteins, with emerging roles in vesicular trafficking and human disease. Dysferlin mutations cause inherited muscular dystrophy, and dysferlin also shows abnormal plasma membrane expression in other forms of muscular dystrophy. We establish dysferlin as a short-lived (protein half-life ∼4–6 h) and transitory transmembrane protein (plasma membrane half-life ∼3 h), with a propensity for rapid endocytosis when mutated, and an association with a syntaxin-4 endocytic route. Dysferlin plasma membrane expression and endocytic rate is regulated by the C2B-FerI-C2C motif, with a critical role identified for C2C. Disruption of C2C dramatically reduces plasma membrane dysferlin (by 2.5-fold), due largely to accelerated endocytosis (by 2.5-fold). These properties of reduced efficiency of plasma membrane expression due to accelerated endocytosis are also a feature of patient missense mutant L344P (within FerI, adjacent to C2C). Importantly, dysferlin mutants that demonstrate accelerated endocytosis also display increased protein lability via endosomal proteolysis, implicating endosomal-mediated proteolytic degradation as a novel basis for dysferlin-deficiency in patients with single missense mutations. Vesicular labeling studies establish that dysferlin mutants rapidly transit from EEA1-positive early endosomes through to dextran-positive lysosomes, co-labeled by syntaxin-4 at multiple stages of endosomal transit. In summary, our studies define a transient biology for dysferlin, relevant to emerging patient therapeutics targeting dysferlin replacement. We introduce accelerated endosomal-directed degradation as a basis for lability of dysferlin missense mutants in dysferlinopathy, and show that dysferlin and syntaxin-4 similarly transit a common endosomal pathway in skeletal muscle cells. 相似文献
6.
Junaith S. Mohamed Michael A. Lopez Gregory A. Cox Aladin M. Boriek 《The Journal of biological chemistry》2013,288(34):24560-24568
Ankyrin repeat domain protein 2 (ANKRD2) translocates from the nucleus to the cytoplasm upon myogenic induction. Overexpression of ANKRD2 inhibits C2C12 myoblast differentiation. However, the mechanism by which ANKRD2 inhibits myoblast differentiation is unknown. We demonstrate that the primary myoblasts of mdm (muscular dystrophy with myositis) mice (pMBmdm) overexpress ANKRD2 and ID3 (inhibitor of DNA binding 3) proteins and are unable to differentiate into myotubes upon myogenic induction. Although suppression of either ANKRD2 or ID3 induces myoblast differentiation in mdm mice, overexpression of ANKRD2 and inhibition of ID3 or vice versa is insufficient to inhibit myoblast differentiation in WT mice. We identified that ANKRD2 and ID3 cooperatively inhibit myoblast differentiation by physical interaction. Interestingly, although MyoD activates the Ankrd2 promoter in the skeletal muscles of wild-type mice, SREBP-1 (sterol regulatory element binding protein-1) activates the same promoter in the skeletal muscles of mdm mice, suggesting the differential regulation of Ankrd2. Overall, we uncovered a novel pathway in which SREBP-1/ANKRD2/ID3 activation inhibits myoblast differentiation, and we propose that this pathway acts as a critical determinant of the skeletal muscle developmental program. 相似文献
7.
Renjini Ramadasan-Nair Narayanappa Gayathri Sudha Mishra Balaraju Sunitha Rajeswara Babu Mythri Atchayaram Nalini Yashwanth Subbannayya Hindalahalli Chandregowda Harsha Ullas Kolthur-Seetharam Muchukunte Mukunda Srinivas Bharath 《The Journal of biological chemistry》2014,289(1):485-509
Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. 相似文献
8.
Enhancement of Neurite Outgrowth Following Calpain Inhibition Is Mediated by Protein Kinase C 总被引:2,自引:0,他引:2
†‡ Thomas B. Shea Corinne M. Cressman §Melissa J. Spencer †Mary Lou Beermann †‡Ralph A. Nixon 《Journal of neurochemistry》1995,65(2):517-527
Abstract: We examined the interdependence of calpain and protein kinase C (PKC) activities on neurite outgrowth in SH-SY-5Y human neuroblastoma cells. SH-SY-5Y cells elaborated neurites when deprived of serum or after a specific thrombin inhibitor, hirudin, was added to serum-containing medium. The extent of neurite outgrowth under these conditions was enhanced by treatment of cells with the cell-permeant cysteine protease inhibitors N-acetyl-leucyl-leucyl-norleucinal (“C1”) and calpeptin or by the phospholipid-mediated intracellular delivery of either a recombinant peptide corresponding to a conserved inhibitory sequence of human calpastatin or a neutralizing anti-calpain antisera. Calpain inhibition in intact cells was confirmed by immunoblot analysis showing inhibition of calpain autolysis and reduced proteolysis of the known calpain substrates fodrin and microtubule-associated protein 1. The above inhibitory peptides and antiserum did not induce neurites in medium containing serum but lacking hirudin, suggesting that increased surface protein adhesiveness is a prerequisite for enhancement of neurite outgrowth by calpain inhibition. Treatment of cells with the PKC inhibitor H7, staurosporine, or sphingosine induced neurite outgrowth independently of serum concentration. Because calpain is thought to regulate PKC activity, we examined this potential interrelationship during neurite outgrowth. Simultaneous treatment with calpain and PKC inhibitors did not produce additive or synergistic effects on neurite outgrowth. PKC activation by 2-O-tetradecanoylphorbol 13-acetate (TPA) prevented and reversed both neurite initiation by serum deprivation and its enhancement by calpain inhibitors. Treatment of cells with the calpain inhibitor C1 retarded PKC down-regulation following TPA treatment. Cell-free analyses demonstrated the relative specificity of various protease and kinase inhibitors for calpain and PKC and confirmed the ability of millimolar calcium-requiring calpain to cleave the SH-SY-5Y PKC regulatory subunit from the catalytic subunit, yielding a free catalytic subunit (protein kinase M). These findings suggest that the influence of PKC on neurite outgrowth is downstream from that of surface adhesiveness and calpain activity. 相似文献
9.
10.
磷酸二酯酶在钙调素(CaM)激活下水解cAMP为AMP。后者经蛇毒水解为无机磷酸和腺苷。用孔雀绿显色测定无机磷酸量与标准CaM比较即可测出CaM活性。该法测定CaM灵敏度3.4ng,可测范围3.4—48ng,批间变异系数3.8%—6.4%。 纯化的红细胞(RBC)经超声破碎,沸水浴加热,离心上清与标准CaM所作的磷酸二脂酶平行激活曲线呈正相关(r=0.9900,p<0.0005)。RBC CaM含量测定,批间变异系数11.5%,回收率97.8%±2.0%。本法测得30例正常人RBC CaM含量为6.31±1.5fg/cell,性别之间无显著差异(p>0.5) 相似文献
11.
Noelia Inés Burgardt Andreas Schmidt Annika Manns Alexandra Schutkowski Günther Jahreis Yi-Jan Lin Bianca Schulze Antonia Masch Christian Lücke Matthias Weiwad 《The Journal of biological chemistry》2015,290(27):16708-16722
Recently we have shown that the peptidyl-prolyl cis/trans isomerase parvulin 17 (Par17) interacts with tubulin in a GTP-dependent manner, thereby promoting the formation of microtubules. Microtubule assembly is regulated by Ca2+-loaded calmodulin (Ca2+/CaM) both in the intact cell and under in vitro conditions via direct interaction with microtubule-associated proteins. Here we provide the first evidence that Ca2+/CaM interacts also with Par17 in a physiologically relevant way, thus preventing Par17-promoted microtubule assembly. In contrast, parvulin 14 (Par14), which lacks only the first 25 N-terminal residues of the Par17 sequence, does not interact with Ca2+/CaM, indicating that this interaction is exclusive for Par17. Pulldown experiments and chemical shift perturbation analysis with 15N-labeled Par17 furthermore confirmed that calmodulin (CaM) interacts in a Ca2+-dependent manner with the Par17 N terminus. The reverse experiment with 15N-labeled Ca2+/CaM demonstrated that the N-terminal Par17 segment binds to both CaM lobes simultaneously, indicating that Ca2+/CaM undergoes a conformational change to form a binding channel between its two lobes, apparently similar to the structure of the CaM-smMLCK796–815 complex. In vitro tubulin polymerization assays furthermore showed that Ca2+/CaM completely suppresses Par17-promoted microtubule assembly. The results imply that Ca2+/CaM binding to the N-terminal segment of Par17 causes steric hindrance of the Par17 active site, thus interfering with the Par17/tubulin interaction. This Ca2+/CaM-mediated control of Par17-assisted microtubule assembly may provide a mechanism that couples Ca2+ signaling with microtubule function. 相似文献
12.
Doherty JT Lenhart KC Cameron MV Mack CP Conlon FL Taylor JM 《The Journal of biological chemistry》2011,286(29):25903-25921
Although RhoA activity is necessary for promoting myogenic mesenchymal stem cell fates, recent studies in cultured cells suggest that down-regulation of RhoA activity in specified myoblasts is required for subsequent differentiation and myotube formation. However, whether this phenomenon occurs in vivo and which Rho modifiers control these later events remain unclear. We found that expression of the Rho-GTPase-activating protein, GRAF1, was transiently up-regulated during myogenesis, and studies in C2C12 cells revealed that GRAF1 is necessary and sufficient for mediating RhoA down-regulation and inducing muscle differentiation. Moreover, forced expression of GRAF1 in pre-differentiated myoblasts drives robust muscle fusion by a process that requires GTPase-activating protein-dependent actin remodeling and BAR-dependent membrane binding or sculpting. Moreover, morpholino-based knockdown studies in Xenopus laevis determined that GRAF1 expression is critical for muscle development. GRAF1-depleted embryos exhibited elevated RhoA activity and defective myofibrillogenesis that resulted in progressive muscle degeneration, defective motility, and embryonic lethality. Our results are the first to identify a GTPase-activating protein that regulates muscle maturation and to highlight the functional importance of BAR domains in myotube formation. 相似文献
13.
Saebomi Park Congmin Li Fran?oise Haeseleer Krzysztof Palczewski James B. Ames 《The Journal of biological chemistry》2014,289(45):31262-31273
CaBP4 modulates Ca2+-dependent activity of L-type voltage-gated Ca2+ channels (Cav1.4) in retinal photoreceptor cells. Mg2+ binds to the first and third EF-hands (EF1 and EF3), and Ca2+ binds to EF1, EF3, and EF4 of CaBP4. Here we present NMR structures of CaBP4 in both Mg2+-bound and Ca2+-bound states and model the CaBP4 structural interaction with Cav1.4. CaBP4 contains an unstructured N-terminal region (residues 1–99) and four EF-hands in two separate lobes. The N-lobe consists of EF1 and EF2 in a closed conformation with either Mg2+ or Ca2+ bound at EF1. The C-lobe binds Ca2+ at EF3 and EF4 and exhibits a Ca2+-induced closed-to-open transition like that of calmodulin. Exposed residues in Ca2+-bound CaBP4 (Phe137, Glu168, Leu207, Phe214, Met251, Phe264, and Leu268) make contacts with the IQ motif in Cav1.4, and the Cav1.4 mutant Y1595E strongly impairs binding to CaBP4. We conclude that CaBP4 forms a collapsed structure around the IQ motif in Cav1.4 that we suggest may promote channel activation by disrupting an interaction between IQ and the inhibitor of Ca2+-dependent inactivation domain. 相似文献
14.
Human red blood cells anion exchange protein (band 3) exposed to peroxyl radicals produced by thermolysis of 2,2′-azo-bis(2-amidinopropane) (AAPH) is degraded by proteinases that prevent accumulation of oxidatively damaged proteins. To assess whether this degradation affects anion transport capacity we used the anionic fluorescent probe 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-y) amino] ethanosulfonate (NBD-taurine). A decrease of band 3 function was observed after exposure to peroxyl radicals. In the presence of proteinase inhibitors the decrement of anion transport through band 3 was smaller indicating that removal achieved by proteinases includes oxidized band 3 which still retain transport ability. Proteinases recognize band 3 aggregates produced by peroxyl radicals as was evaluated by immunoblotting. It is concluded that decrease of band 3 transport capacity may result from a direct protein oxidation and from its degradation by proteinases and that band 3 aggregates removal may prevent macrophage recognition of the senescent condition which would lead to cell disposal. 相似文献
15.
Razvan L. Cornea Florentin R. Nitu Montserrat Samsó David D. Thomas Bradley R. Fruen 《The Journal of biological chemistry》2010,285(25):19219-19226
The 12-kDa FK506-binding proteins (FKBP12 and FKBP12.6) are regulatory subunits of ryanodine receptor (RyR) Ca2+ release channels. To investigate the structural basis of FKBP interactions with the RyR1 and RyR2 isoforms, we used site-directed fluorescent labeling of FKBP12.6, ligand binding measurements, and fluorescence resonance energy transfer (FRET). Single-cysteine substitutions were introduced at five positions distributed over the surface of FKBP12.6. Fluorescent labeling at position 14, 32, 49, or 85 did not affect high affinity binding to the RyR1. By comparison, fluorescent labeling at position 41 reduced the affinity of FKBP12.6 binding by 10-fold. Each of the five fluorescent FKBPs retained the ability to inhibit [3H]ryanodine binding to the RyR1, although the maximal extent of inhibition was reduced by half when the label was attached at position 32. The orientation of FKBP12.6 bound to the RyR1 and RyR2 was examined by measuring FRET from the different labeling positions on FKBP12.6 to an acceptor attached within the RyR calmodulin subunit. FRET was dependent on the position of fluorophore attachment on FKBP12.6; however, for any given position, the distance separating donors and acceptors bound to RyR1 versus RyR2 did not differ significantly. Our results show that FKBP12.6 binds to RyR1 and RyR2 in the same orientation and suggest new insights into the discrete structural domains responsible for channel binding and inhibition. FRET mapping of RyR-bound FKBP12.6 is consistent with the predictions of a previous cryoelectron microscopy study and strongly supports the proposed structural model. 相似文献
16.
Xiaoyan Lin Janelle Ruiz Ilda Bajraktari Rachel Ohman Soojay Banerjee Katherine Gribble Joshua D. Kaufman Paul T. Wingfield Robert C. Griggs Kenneth H. Fischbeck Ami Mankodi 《The Journal of biological chemistry》2014,289(19):13615-13626
The core of skeletal muscle Z-discs consists of actin filaments from adjacent sarcomeres that are cross-linked by α-actinin homodimers. Z-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP)/Cypher interacts with α-actinin, myotilin, and other Z-disc proteins via the PDZ domain. However, these interactions are not sufficient to maintain the Z-disc structure. We show that ZASP directly interacts with skeletal actin filaments. The actin-binding domain is between the modular PDZ and LIM domains. This ZASP region is alternatively spliced so that each isoform has unique actin-binding domains. All ZASP isoforms contain the exon 6-encoded ZASP-like motif that is mutated in zaspopathy, a myofibrillar myopathy (MFM), whereas the exon 8–11 junction-encoded peptide is exclusive to the postnatal long ZASP isoform (ZASP-LΔex10). MFM is characterized by disruption of skeletal muscle Z-discs and accumulation of myofibrillar degradation products. Wild-type and mutant ZASP interact with α-actin, α-actinin, and myotilin. Expression of mutant, but not wild-type, ZASP leads to Z-disc disruption and F-actin accumulation in mouse skeletal muscle, as in MFM. Mutations in the actin-binding domain of ZASP-LΔex10, but not other isoforms, cause disruption of the actin cytoskeleton in muscle cells. These isoform-specific mutation effects highlight the essential role of the ZASP-LΔex10 isoform in F-actin organization. Our results show that MFM-associated ZASP mutations in the actin-binding domain have deleterious effects on the core structure of the Z-discs in skeletal muscle. 相似文献
17.
Degradation of Microtubule-Associated Protein 2 and Brain Spectrin by Calpain: A Comparative Study 总被引:7,自引:5,他引:7
Gail V. W. Johnson†‡ Joel M. Litersky‡ Richard S. Jope† 《Journal of neurochemistry》1991,56(5):1630-1638
The in vitro degradation of microtubule-associated protein 2 (MAP-2) and spectrin by the calcium-dependent neutral protease calpain was studied. Five major results are reported. First, MAP-2 isolated from twice-cycled microtubules (2 X MT MAP-2) was extremely sensitive to calpain-induced hydrolysis. Even at an enzyme-to-substrate ratio (wt/wt) of 1:200, 2 X MT MAP-2 was significantly degraded by calpain. Second, MAP-2 purified from the total brain heat-stable fraction (total MAP-2) was significantly more resistant to calpain-induced hydrolysis compared with 2 X MT MAP-2. Third, MAP-2a and MAP-2b were proteolyzed similarly by calpain, although some relative resistance of MAP-2b was observed. Fourth, the presence of calmodulin significantly increased the extent of calpain-induced hydrolysis of the alpha-subunit of spectrin. Fifth, the two neuronal isoforms of brain spectrin (240/235 and 240/235E, referred to as alpha/beta N and alpha/beta E, respectively) showed different sensitivities to calpain. alpha N-spectrin was significantly more sensitive to calpain-induced degradation compared to alpha E-spectrin. Among other things, these results suggest a role for the calpain-induced degradation of MAP-2, as well as spectrin, in such physiological processes as alterations in synaptic efficacy, dendritic remodeling, and in pathological processes associated with neurodegeneration. 相似文献
18.
Katharina Papsdorf Julia Sacherl Klaus Richter 《The Journal of biological chemistry》2014,289(36):25250-25261
The molecular chaperone Hsc70 assists in the folding of non-native proteins together with its J domain- and BAG domain-containing cofactors. In Caenorhabditis elegans, two BAG domain-containing proteins can be identified, one of them being UNC-23, whose mutation induces severe motility dysfunctions. Using reporter strains, we find that the full-length UNC-23, in contrast to C-terminal fragments, localizes specifically to the muscular attachment sites. C-terminal fragments of UNC-23 instead perform all Hsc70-related functions, like ATPase stimulation and regulation of folding activity, albeit with lower affinity than BAG-1. Interestingly, overexpression of CFP-Hsc70 can induce muscular defects in wild-type nematodes that phenocopy the knockout of its cofactor UNC-23. Strikingly, the motility dysfunction in the unc-23 mutated strain can be cured specifically by down-regulation of the antagonistic Hsc70 cochaperone DNJ-13, implying that the severe phenotype is caused by misregulation of the Hsc70 cycle. These findings point out that the balanced action of cofactors in the ATP-driven cycle of Hsc70 is crucial for the contribution of Hsc70 to muscle functionality. 相似文献
19.
Pham Nguyen Quy Akiko Kuma Philippe Pierre Noboru Mizushima 《The Journal of biological chemistry》2013,288(2):1125-1134
Drastic protein degradation occurs during muscle atrophy induced by denervation, fasting, immobility, and various systemic diseases. Although the ubiquitin-proteasome system is highly up-regulated in denervated muscles, the involvement of autophagy and protein synthesis has been controversial. Here, we report that autophagy is rather suppressed in denervated muscles even under autophagy-inducible starvation conditions. This is due to a constitutive activation of mammalian target of rapamycin complex 1 (mTORC1). We further reveal that denervation-induced mTORC1 activation is dependent on the proteasome, which is likely mediated by amino acids generated from proteasomal degradation. Protein synthesis and ribosome biogenesis are paradoxically increased in denervated muscles in an mTORC1-dependent manner, and mTORC1 activation plays an anabolic role against denervation-induced muscle atrophy. These results suggest that denervation induces not only muscle degradation but also adaptive muscle response in a proteasome- and mTORC1-dependent manner. 相似文献
20.
Audrey N. Chang Pavan K. Battiprolu Patrick M. Cowley Guohua Chen Robert D. Gerard Jose R. Pinto Joseph A. Hill Anthony J. Baker Kristine E. Kamm James T. Stull 《The Journal of biological chemistry》2015,290(17):10703-10716
In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca2+ sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity. 相似文献