首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
EVER1 and 2 confer resistance to cutaneous oncogenic human papillomavirus infections by downregulating the activating protein 1 (AP-1) signaling pathway. Defects in their expression are associated with susceptibility to epidermodysplasia verruciformis, which is characterized by persistent β-HPV infection, tumor necrosis factor alpha (TNF-α) overproduction in keratinocytes and the development of skin cancers. TNF-α-induced apoptosis is a key defense strategy, preventing the persistence of the virus within cells, but the role of EVER proteins in this cell death mechanism triggered by extrinsic stimuli is unknown. We show here that EVER2 induces TNF-α- and TRAIL-dependant apoptosis. It interacts with the N-terminal domain of TRADD, impairs the recruitment of TRAF2 and RIPK1 and promotes apoptosis. The skin cancer-associated EVER2 I306 allele results in an impaired TRADD–EVER2 interaction, with lower levels of cell death following treatment with TNF-α. These data highlight a new, critical function of EVER2 in controlling cell survival in response to death stimuli.  相似文献   

4.
The Epstein-Barr virus (EBV) is transmitted from host-to-host via saliva and is associated with epithelial malignancies including nasopharyngeal carcinoma (NPC) and some forms of gastric carcinoma (GC). Nevertheless, EBV does not transform epithelial cells in vitro where it is rapidly lost from infected primary epithelial cells or epithelial tumor cells. Long-term infection by EBV, however, can be established in hTERT-immortalized nasopharyngeal epithelial cells. Here, we hypothesized that increased telomerase activity in epithelial cells enhances their susceptibility to infection by EBV. Using HONE-1, AGS and HEK293 cells we generated epithelial model cell lines with increased or suppressed telomerase activity by stable ectopic expression of hTERT or of a catalytically inactive, dominant negative hTERT mutant. Infection experiments with recombinant prototypic EBV (rB95.8), recombinant NPC EBV (rM81) with increased epithelial cell tropism compared to B95.8, or recombinant B95.8 EBV with BZLF1-knockout that is not able to undergo lytic replication, revealed that infection frequencies positively correlate with telomerase activity in AGS cells but also partly depend on the cellular background. AGS cells with increased telomerase activity showed increased expression mainly of latent EBV genes, suggesting that increased telomerase activity directly acts on the EBV infection of epithelial cells by facilitating latent EBV gene expression early upon virus inoculation. Thus, our results indicate that infection of epithelial cells by EBV is a very selective process involving, among others, telomerase activity and cellular background to allow for optimized host-to-host transmission via saliva.  相似文献   

5.
6.
Epstein-Barr virus (EBV) uses nasal mucosa-associated lymphoid tissue (NALT) as a portal of entry to establish life-long persistence in memory B cells. We previously showed that naïve and memory B cells from NALT are equally susceptible to EBV infection. Here we show that memory B cells from NALT are significantly more susceptible to EBV infection than those from remote lymphatic organs. We identify β1 integrin, which is expressed the most by naïve B cells of distinct lymphoid origin and by memory B cells from NALT, as a mediator of increased susceptibility to infection by EBV. Furthermore, we show that BMRF-2-β1 integrin interaction and the downstream signal transduction pathway are critical for postbinding events. An increase of β1 integrin expression in peripheral blood memory B cells provoked by CD40 stimulation plus B-cell receptor cross-linking increased the susceptibility of non-NALT memory B cells to EBV infection. Thus, EBV seems to utilize the increased activation status of memory B cells residing in the NALT to establish and ensure persistence.Epstein-Barr virus (EBV) is a ubiquitous human gammaherpesvirus that is transmitted via saliva and infects more than 90% of the world''s population (21). Much of EBV''s medical importance relates to its association with B-cell malignancies, including Burkitt''s lymphoma, Hodgkin''s lymphoma, and posttransplant lymphoproliferative disease (21). The oncogenic potential of EBV is clearly illustrated by its unique capability to transform B cells in vitro (21).In the current paradigm, EBV infects naïve B cells in tonsils in vivo (32). EBV is present mainly as a latent virus; upon infection, EBV expresses distinct patterns of its latency genes depending upon distinct B-cell differentiation stages, varying from expression of all 10 known EBV latency genes in naïve B cells to the complete absence of EBV mRNA expression in resting memory B cells. This has led to the model that EBV, by virtue of expression of its latency genes, provides cell survival signals in naïve B cells (32). In particular, recent data suggest that EBV expedites the antigen-driven somatic hypermutation and selection of B cells taking place in germinal centers (GC) (26). Chaganti et al. challenged the current paradigm by showing for patients with primary EBV infection that EBV avoids GC transit and directly infects memory B cells (6). This report is consistent with in vitro experiments showing that EBV is able to infect memory B cells (9, 10), in addition to the well-accepted susceptibility of naïve and GC B cells to EBV.Irrespective of which B-cell subset is the primary target of EBV, its propagation within the host is linked to proliferation of infected B cells, which deliver latent EBV to daughter cells, or, more rarely, to switching of EBV to lytic infection (21). The latter process can eventually be triggered by the differentiation of infected memory B cells into plasma cells and results in the release of virions that may subsequently infect new B cells (17). Importantly, transmission of EBV to naïve hosts is thought to occur via droplets loaded with virions (21). Thus, lytic replication of EBV takes place best in nasal mucosa-associated lymphoid tissue (NALT), which will release EBV into the saliva, generating infectious droplets. Therefore, the NALT is the point of EBV transmission, i.e., the portal of entry of EBV as well as a shedding organ for further transmission (21).The attachment of EBV to B cells is mediated by the direct interaction of EBV glycoprotein gp350/220 with cellular CD21, initiating receptor-mediated endocytosis. After binding to CD21, EBV gp42 can interact with host HLA class II molecules, leading to a conformational change in the viral glycoproteins and triggering fusion with the host cell membrane (12, 28). Nevertheless, experimental data suggest that CD21 and HLA class II molecules are dispensable for the infection of B cells (14). Notably, in polarized oropharyngeal epithelial cells, which lack CD21, interactions between β1 integrin and the EBV glycoprotein BMRF-2 via its Arg-Gly-Asp (RGD) motif are critical for infection (34, 38, 39). The role of β1 integrin in mediating EBV infection of memory B cells from NALT or non-NALT is unknown.We recently demonstrated that tonsillar memory B cells are much more susceptible to EBV infection than those from the peripheral blood, originating from various lymphoid tissues (9). Thus, tonsillar memory B cells seem to express properties which render them more susceptible to EBV infection than their counterparts of other lymphatic origin.Here we hypothesized that memory B cells from the NALT exhibit specific properties rendering them highly susceptible to EBV infection. Indeed, in this work, we found that memory B cells from the NALT are distinguishable from memory B cells of other lymphoid tissue by their β1 integrin expression levels, and thus their activation status, and that this higher expression level is a critical factor in their greater susceptibility to EBV infection.  相似文献   

7.
Epstein-Barr virus (EBV) is a human tumor virus and a paradigm of herpesviral latency. Mature naïve or memory B cells are EBV's preferred targets in vitro and in vivo. Upon infection of any B cell with EBV, the virus induces cellular proliferation to yield lymphoblastoid cell lines (LCLs) in vitro and establishes a latent infection in them. In these cells a ‘classical’ subset of latent viral genes is expressed that orchestrate and regulate cellular activation and proliferation, prevent apoptosis, and maintain viral latency. Surprisingly, little is known about the early events in primary human B cells infected with EBV. Recent analyses have revealed the initial but transient expression of additional viral genes that do not belong to the ‘classical’ latent subset. Some of these viral genes have been known to initiate the lytic, productive phase of EBV but virus synthesis does not take place early after infection. The early but transient expression of certain viral lytic genes is essential for or contributes to the initial survival and cell cycle entry of resting B cells to foster their proliferation and sustain a latent infection. This review summarizes the recent findings and discusses the presumed function(s) of viral genes expressed shortly but transiently after infection of B-lymphocytes with EBV.  相似文献   

8.
Lifelong persistence of Epstein-Barr virus (EBV) in infected hosts is mainly owed to the virus'' pronounced abilities to evade immune responses of its human host. Active immune evasion mechanisms reduce the immunogenicity of infected cells and are known to be of major importance during lytic infection. The EBV genes BCRF1 and BNLF2a encode the viral homologue of IL-10 (vIL-10) and an inhibitor of the transporter associated with antigen processing (TAP), respectively. Both are known immunoevasins in EBV''s lytic phase. Here we describe that BCRF1 and BNLF2a are functionally expressed instantly upon infection of primary B cells. Using EBV mutants deficient in BCRF1 and BNLF2a, we show that both factors contribute to evading EBV-specific immune responses during the earliest phase of infection. vIL-10 impairs NK cell mediated killing of infected B cells, interferes with CD4+ T-cell activity, and modulates cytokine responses, while BNLF2a reduces antigen presentation and recognition of newly infected cells by EBV-specific CD8+ T cells. Together, both factors significantly diminish the immunogenicity of EBV-infected cells during the initial, pre-latent phase of infection and may improve the establishment of a latent EBV infection in vivo.  相似文献   

9.
C Rooney  J G Howe  S H Speck    G Miller 《Journal of virology》1989,63(4):1531-1539
The Epstein-Barr virus (EBV) genes expressed in B lymphocytes immortalized in vitro or in Burkitt's lymphoma (BL) cells infected in vivo have been characterized previously; however, the viral products which are essential for immortalization or for establishment of EBV latency are still not known. To approach this question, we compared the kinetics of expression of EBV nuclear antigens and the two EBV-encoded small RNAs, EBER1 and EBER2, after infection of primary B cells or EBV genome-negative BL cells with either an immortalizing EBV strain (B95-8) or the nonimmortalizing deletion mutant (HR-1). Following infection of primary cells with B95-8 virus, EBV nuclear antigen (EBNA)-2 was expressed first, followed by EBNA-1, -3, and -4 (also called leader protein [LP]) and the two small RNAs. Infection of EBV genome-negative BL cells with the same strain of virus resulted in a similar pattern of gene expression, except that the EBNAs appeared together and more rapidly. EBERs were not apparent in one BL cell line converted by B95-8. The only products detected after infection of primary B lymphocytes with the HR-1 deletion mutant were the EBNA-4 (LP) family and trace amounts of EBER1. Although HR-1 could express neither EBNA-1, EBNA-3, nor EBER2 in primary cells, all these products were expressed rapidly after HR-1 infection of EBV genome-negative BL cell lines. The results indicate that the mutation in HR-1 virus affects immortalization not only through failure to express EBNA-2, a gene which is deleted, but also indirectly by curtailing expression of several other EBV genes whose coding regions are intact in the HR-1 virus and normally expressed during latency. The pattern of latent EBV gene expression after HR-1 infection is dependent on the host cell, perhaps through products specific for the cell cycle or the state of B-cell differentiation.  相似文献   

10.
《Research in virology》1990,141(1):17-30
We have investigated the effect of Epstein-Barr virus nuclear antigen 1 (EBNA-1), a nuclear protein encoded by EBV, on herpes simplex virus type 1 (HSV-1) infection either in cells constitutively expressing EBNA-1 or in transient expression assays. Rat-1 cells and rat embryo fibroblasts (REF) immortalized by c-myc or E1A were transfected with a specific EBV DNA fragment coding for EBNA-1. Cloned cell lines which constitutively expressed this antigen were infected with HSV-1. Our results indicate that in EBNA-1-expressing cells, virus growth was higher than in control cells for different virus strains or rodent cell lines. This increase was maximal when cells were infected at low multiplicity, as determined by virus growth, and correlated with the stimulation of viral DNA synthesis. REF + c-myc and Vero cells were contransfected by an EBNA-1 expression vector driven by Moloney murine leukaemia virus LTR and HSV-1 immediate-early (α0) or early thymidine kinase upstream promoter regulatory regions linked to chloramphenicol acetyltransferase (CAT) coding sequences as effectors. In both cell lines, stimulation of CAT expression by EBNA-1 was observed only with the immediate-early promoter. These results suggest that EBNA-1 can transactivate immediate-early HSV-1 expression.  相似文献   

11.
Nasopharyngeal carcinoma (NPC) is common among southern Chinese including the ethnic Cantonese population living in Hong Kong. Epstein-Barr virus (EBV) infection is detected in all undifferentiated type of NPC in this endemic region. Establishment of stable and latent EBV infection in premalignant nasopharyngeal epithelial cells is an early event in NPC development and may contribute to its pathogenesis. Immortalized primary nasopharyngeal epithelial cells represent an important tool for investigation of EBV infection and its tumorigenic potential in this special type of epithelial cells. However, the limited availability and small sizes of nasopharyngeal biopsies have seriously restricted the establishment of primary nasopharyngeal epithelial cells for immortalization. A reliable and effective method to immortalize primary nasopharyngeal epithelial cells will provide unrestricted materials for EBV infection studies. An earlier study has reported that Bmi-1 expression could immortalize primary nasopharyngeal epithelial cells. However, its efficiency and actions in immortalization have not been fully characterized. Our studies showed that Bmi-1 expression alone has limited ability to immortalize primary nasopharyngeal epithelial cells and additional events are often required for its immortalization action. We have identified some of the key events associated with the immortalization of primary nasopharyngeal epithelial cells. Efficient immortalization of nasopharyngeal epithelial cells could be reproducibly and efficiently achieved by the combined actions of Bmi-1 expression, activation of telomerase and silencing of p16 gene. Activation of MAPK signaling and gene expression downstream of Bmi-1 were detected in the immortalized nasopharyngeal epithelial cells and may play a role in immortalization. Furthermore, these newly immortalized nasopharyngeal epithelial cells are susceptible to EBV infection and supported a type II latent EBV infection program characteristic of EBV-infected nasopharyngeal carcinoma. The establishment of an efficient method to immortalize primary nasopharyngeal epithelial cells will facilitate the investigation into the role of EBV infection in pathogenesis of nasopharyngeal carcinoma.  相似文献   

12.
Epstein-Barr virus (EBV) is a ubiquitous herpesvirus associated with infectious mononucleosis and several tumors. The BARF1 gene is transcribed early after EBV infection from the BamHI A fragment of the EBV genome. Evidence shown here indicates that the BARF1 protein is secreted into the medium of transfected cells and from EBV-carrying B cells induced to allow lytic replication of the virus. Expression cloning identified colony-stimulating factor-1 (CSF-1) as a ligand for BARF1. Computer-assisted analyses indicated that subtle amino acid sequence homology exists between BARF1 and c-fms, the cellular proto-oncogene that is the receptor for CSF-1. Recombinant BARF1 protein was found to be biologically active, and it neutralized the proliferative effects of human CSF-1 in a dose-dependent fashion when assayed in vitro. Since CSF-1 is a pleiotropic cytokine best known for its differentiating effects on macrophages, these data suggest that BARF1 may function to modulate the host immune response to EBV infection.  相似文献   

13.
Epstein Barr virus (EBV) exhibits a distinct tropism for both B cells and epithelial cells. The virus persists as a latent infection of memory B cells in healthy individuals, but a role for infection of normal epithelial is also likely. Infection of B cells is initiated by the interaction of the major EBV glycoprotein gp350 with CD21 on the B cell surface. Fusion is triggered by the interaction of the EBV glycoprotein, gp42 with HLA class II, and is thereafter mediated by the core fusion complex, gH/gL/gp42. In contrast, direct infection of CD21-negative epithelial cells is inefficient, but efficient infection can be achieved by a process called transfer infection. In this study, we characterise the molecular interactions involved in the three stages of transfer infection of epithelial cells: (i) CD21-mediated co-capping of EBV and integrins on B cells, and activation of the adhesion molecules, (ii) conjugate formation between EBV-loaded B cells and epithelial cells via the capped adhesion molecules, and (iii) interaction of EBV glycoproteins with epithelial cells, with subsequent fusion and uptake of virions. Infection of epithelial cells required the EBV gH and gL glycoproteins, but not gp42. Using an in vitro model of normal polarized epithelia, we demonstrated that polarization of the EBV receptor(s) and adhesion molecules restricted transfer infection to the basolateral surface. Furthermore, the adhesions between EBV-loaded B cells and the basolateral surface of epithelial cells included CD11b on the B cell interacting with heparan sulphate moieties of CD44v3 and LEEP-CAM on epithelial cells. Consequently, transfer infection was efficiently mediated via CD11b-positive memory B cells but not by CD11b–negative naïve B cells. Together, these findings have important implications for understanding the mechanisms of EBV infection of normal and pre-malignant epithelial cells in vivo.  相似文献   

14.
15.
16.
17.
Epstein-Barr virus (EBV) efficiently drives proliferation of human primary B cells in vitro, a process relevant for human diseases such as infectious mononucleosis and posttransplant lymphoproliferative disease. Human B-cell proliferation is also driven by ligands of Toll-like receptors (TLRs), notably viral or bacterial DNA containing unmethylated CpG dinucleotides, which triggers TLR9. Here we quantitatively investigated how TLR stimuli influence EBV-driven B-cell proliferation and expression of effector molecules. CpG DNA synergistically increased EBV-driven proliferation and transformation, T-cell costimulatory molecules, and early production of interleukin-6. CpG DNA alone activated only memory B cells, but CpG DNA enhanced EBV-mediated transformation of both memory and naive B cells. Ligands for TLR2 or TLR7/8 or whole bacteria had a weaker but still superadditive effect on B-cell transformation. Additionally, CpG DNA facilitated the release of transforming virus by established EBV-infected lymphoblastoid cell lines. These results suggest that the proliferation of EBV-infected B cells and their capability to interact with immune effector cells may be directly influenced by components of bacteria or other microbes present at the site of infection.Epstein-Barr virus (EBV), a herpesvirus, is a very successful infectious agent: it establishes and maintains latent infection in >95% of human beings worldwide. This success is related to EBV''s varied strategies to maintain itself in its preferred host cell type, the B cell, by establishing different modes of latent infection (46). Some of these modes (latency modes 0, I, and II) are characterized by a resting B-cell phenotype and expression of a very limited set of EBV proteins (from none to four). In contrast, latency III involves the expression of at least 12 EBV latent-cycle gene products (10 proteins and 2 RNAs) (30, 31), which in their combined action profoundly alter the B cell''s appearance and behavior by inducing B-cell activation associated with proliferation, altered receptor expression, and cytokine secretion, as well as causing enhanced antigen presentation (31).In these various features, EBV infection of the latency III type resembles physiological activation of B cells in germinal centers even in its molecular details, because EBV closely mimics or constitutively activates some of the B cell''s main signaling pathways. Exogenous physiological signals leading to B-cell activation have been classified as “signal 1,” the stimulation of the B-cell receptor (BCR) by antigen binding; “signal 2,” the stimulation of CD40 by the CD40 ligand molecule, expressed on activated helper T cells; and “signal 3,” the stimulation of Toll-like receptors (TLRs) by microbial components, such as unmethylated CpG DNA, or their mimics. All three signals together are required for maximal proliferation of naive B cells (47). However, stimulation with TLR ligands alone, for example, CpG DNA, is sufficient to cause transient B-cell activation, including proliferation and induction of immune effector molecules such as CD86, a T-cell-costimulatory molecule (24). Additional immune effectors, the cytokines interleukin-6 (IL-6), IL-10, and IL-12, are induced when CpG stimulation is combined with strong CD40 stimulation (55).For primary infection of B cells, it is well established that EBV''s latent membrane proteins LMP2A (10, 39) and LMP1 (22) mimic signaling by the BCR and CD40, respectively. It is less clear whether and how EBV generates a potential signal 3 in the course of primary B-cell infection. A role of the TLR7 pathway has been proposed, based on the observation that EBV infection of naive B cells elevates the expression of TLR7 and its downstream signaling mediators (40). Additional mechanisms have recently been proposed to explain how EBV might trigger TLRs or other pattern recognition receptors in other cellular systems. For example, the Epstein-Barr virus-encoded small RNAs (EBERs) were described to trigger the retinoic acid-inducible gene I (RIG-I)-encoded protein, a receptor for various viral RNAs, in Burkitt''s lymphoma cells (48, 49). TLR2 signaling in monocytes is activated by binding of EBV particles to the cells (21) or by extracellular provision of EBV dUTPase (2).However, a physiologically relevant signal 3 need not originate in EBV itself. Other microbial agents present at the site of EBV infection might influence EBV infection, B-cell transformation, and virus release. For example, infectious mononucleosis (IM), a frequent consequence of primary EBV infection in adolescents and adults, is usually accompanied by tonsillitis with characteristic massive bacterial colonization (50), a likely source of TLR agonists acting on local EBV-infected B cells. Here we investigate the effects of CpG DNA and other exogenous TLR ligands on EBV-driven B-cell proliferation, clonal outgrowth, and induction of activation-associated cellular receptors and cytokines.  相似文献   

18.

Background

Several human malignancies are associated with Epstein-Barr virus (EBV) and more than 95% of the adult human population carries this virus lifelong. EBV efficiently infects human B cells and persists in this cellular compartment latently. EBV-infected B cells become activated and growth transformed, express a characteristic set of viral latent genes, and acquire the status of proliferating lymphoblastoid cell lines in vitro. Because EBV infects only primate cells, it has not been possible to establish a model of infection in immunocompetent rodents. Such a model would be most desirable in order to study EBV''s pathogenesis and latency in a suitable and amenable host.

Methodology/Principal Findings

We stably introduced recombinant EBV genomes into mouse embryonic stem cells and induced their differentiation to B cells in vitro to develop the desired model. In vitro differentiated murine B cells maintained the EBV genomes but expression of viral genes was restricted to the latent membrane proteins (LMPs). In contrast to human B cells, EBV''s nuclear antigens (EBNAs) were not expressed detectably and growth transformed murine B cells did not arise in vitro. Aberrant splicing and premature termination of EBNA mRNAs most likely prevented the expression of EBNA genes required for B-cell transformation.

Conclusions/Significance

Our findings indicate that fundamental differences in gene regulation between mouse and man might block the route towards a tractable murine model for EBV.  相似文献   

19.
The EBV carrying lines MEC1 and MEC2 were established earlier from explants of blood derived cells of a chronic lymphocytic leukemia (CLL) patient at different stages of progression to prolymphocytoid transformation (PLL). This pair of lines is unique in several respects. Their common clonal origin was proven by the rearrangement of the immunoglobulin genes. The cells were driven to proliferation in vitro by the same indigenous EBV strain. They are phenotypically different and represent subsequent subclones emerging in the CLL population. Furthermore they reflect the clinical progression of the disease. We emphasize that the support for the expression of the EBV encoded growth program is an important differentiation marker of the CLL cells of origin that was shared by the two subclones. It can be surmised that proliferation of EBV carrying cells in vitro, but not in vivo, reflects the efficient surveillance that functions even in the severe leukemic condition. The MEC1 line arose before the aggressive clinical stage from an EBV carrying cell within the subclone that was in the early prolymphocytic transformation stage while the MEC2 line originated one year later, from the subsequent subclone with overt PLL characteristics. At this time the disease was disseminated and the blood lymphocyte count was considerably elevated. The EBV induced proliferation of the MEC cells belonging to the subclones with markers of PLL agrees with earlier reports in which cells of PLL disease were infected in vitro and immortalized to LCL. They prove also that the expression of EBV encoded set of proteins can be determined at the event of infection. This pair of lines is particularly important as they provide in vitro cells that represent the subclonal evolution of the CLL disease. Furthermore, the phenotype of the MEC1 cells shares several characteristics of ex vivo CLL cells.  相似文献   

20.
Epstein Barr virus (EBV) infection expands CD8+ T cells specific for lytic antigens to high frequencies during symptomatic primary infection, and maintains these at significant numbers during persistence. Despite this, the protective function of these lytic EBV antigen-specific cytotoxic CD8+ T cells remains unclear. Here we demonstrate that lytic EBV replication does not significantly contribute to virus-induced B cell proliferation in vitro and in vivo in a mouse model with reconstituted human immune system components (huNSG mice). However, we report a trend to reduction of EBV-induced lymphoproliferation outside of lymphoid organs upon diminished lytic replication. Moreover, we could demonstrate that CD8+ T cells against the lytic EBV antigen BMLF1 can eliminate lytically replicating EBV-transformed B cells from lymphoblastoid cell lines (LCLs) and in vivo, thereby transiently controlling high viremia after adoptive transfer into EBV infected huNSG mice. These findings suggest a protective function for lytic EBV antigen-specific CD8+ T cells against EBV infection and against virus-associated tumors in extra-lymphoid organs. These specificities should be explored for EBV-specific vaccine development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号