首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of WI38 human diploid fibroblasts (HDFs) to hydrogen peroxide (H2O2) induced premature senescence. The senescent HDFs were permanently arrested and exhibited a senescent phenotype including enlarged and flattened cell morphology and increased senescence-associated beta-galactosidase (SA-beta-gal) activity. The induction of HDF senescence was associated with an activation of p53, increased expression of p21Cip1/WAF1, and hypophosphorylation of retinoblastoma protein (Rb), while no changes in the expression of p16Ink4a, p27Kip1, and p14Arf were observed. Exposure of WI38 cells to H2O2 also selectively activated phosphatidylinostol 3-kinase (PI3 kinase) and mitogen-activated protein kinase (MAPK) kinase (MEK), while no changes in p38 MAPK and Jun kinase (JNK) activities were observed. Selective inhibition of PI3 kinase activity with LY294002 abrogated H2O2-induced cell enlargement and flattened morphology and significantly attenuated the increase in SA-beta-gal activity, but did not affect H2O2-induced cell cycle arrest. In contrast, selective inhibition of MEK and p38 MAPK with PD98059 and SB203580, respectively, produced no significant effect on H2O2-induced senescent phenotype and cell cycle arrest. These findings demonstrate that expression of the senescent phenotype can be uncoupled from cell cycle arrest in prematurely senescent cells induced by H2O2 and does not contribute to the maintenance of permanent cell cycle arrest.  相似文献   

2.
3.
Chen X  Zhang W  Gao YF  Su XQ  Zhai ZH 《Cell research》2002,12(3-4):229-233
P21(Waf1/Cip1) is a potent cyclin-dependent kinase inhibitor. As a downstream mediator of p53, p21(Waf1/Cip1) involves in cell cycle arrest, differentiation and apoptosis. Previous studies in human cells provided evidence for a link between p21(Waf1/Cip1) and cellular senescence. While in murine cells, the role of p21(Waf1/Cip1) is indefinite. We explored this issue using NIH3T3 cells with inducible p21(Waf1/Cip1) expression. Induction of p21(Waf1/Cip1) triggered G1 growth arrest, and NIH3T3-p21 cells exhibited morphologic features, such as enlarged and flattened cellular shape, specific to the senescence phenotype. We also showed that p21(Waf1/Cip1)-transduced NIH3T3 cells expressed beta-galactosidase activity at pH 6.0, which is known to be a marker of senescence. Our results suggest that p2l(Waf1/Cip1) can also induce senescence-like changes in murine cells.  相似文献   

4.
Cyclic nucleotide phosphodiesterase 3 (PDE3) is an important regulator of cyclic adenosine monophosphate (cAMP) signaling within the cardiovascular system. In this study, we examined the role of PDE3A and PDE3B isoforms in regulation of growth of cultured vascular smooth muscle cells (VSMCs) and the mechanisms by which they may affect signaling pathways that mediate mitogen-induced VSMC proliferation. Serum- and PDGF-induced DNA synthesis in VSMCs grown from aortas of PDE3A-deficient (3A-KO) mice was markedly less than that in VSMCs from PDE3A wild type (3A-WT) and PDE3B-deficient (3B-KO) mice. The reduced growth response was accompanied by significantly less phosphorylation of extracellular signal-regulated kinase (ERK) in 3A-KO VSMCs, most likely due to a combination of greater site-specific inhibitory phosphorylation of Raf-1Ser-259 by protein kinase A (PKA) and enhanced dephosphorylation of ERKs due to elevated mitogen-activated protein kinase phosphatase 1 (MKP-1). Furthermore, 3A-KO VSMCs, compared with 3A-WT, exhibited higher basal PKA activity and cAMP response element-binding protein (CREB) phosphorylation, higher levels of p53 and p53 phosphorylation, and elevated p21 protein together with lower levels of Cyclin-D1 and retinoblastoma (Rb) protein and Rb phosphorylation. Adenoviral overexpression of inactive CREB partially restored growth effects of serum in 3A-KO VSMCs. In contrast, exposure of 3A-WT VSMCs to VP16 CREB (active CREB) was associated with inhibition of serum-induced DNA synthesis similar to that in untreated 3A-KO VSMCs. Transfection of 3A-KO VSMCs with p53 siRNA reduced p21 and MKP-1 levels and completely restored growth without affecting amounts of Cyclin-D1 and Rb phosphorylation. We conclude that PDE3A regulates VSMC growth via two complementary pathways, i.e. PKA-catalyzed inhibitory phosphorylation of Raf-1 with resulting inhibition of MAPK signaling and PKA/CREB-mediated induction of p21, leading to G0/G1 cell cycle arrest, as well as by increased accumulation of p53, which induces MKP-1, p21, and WIP1, leading to inhibition of G1 to S cell cycle progression.  相似文献   

5.
Stimulation of the Ras/MAPK cascade can either activate p53 and promote replicative senescence and apoptosis, or degrade p53 and promote cell survival. Here we show that p53 can directly counteract the Ras/MAPK signaling by inactivating ERK2/MAPK. This inactivation is due to a caspase cleavage of the ERK2 protein and contributes to p53-mediated growth arrest. We found that in Ras-transformed cells, growth arrest induced by p53, but not p21(Waf1), is associated with a strong reduction in ERK2 activity, phosphorylation, and protein half-life, and with the appearance of caspase activity. Likewise, DNA damage-induced cell cycle arrest correlates with p53-dependent ERK2 downregulation and caspase activation. Furthermore, caspase inhibitors or expression of a caspase-resistant ERK2 mutant interfere with ERK2 cleavage and restore proliferation in the presence of p53 activation, indicating that caspase-mediated ERK2 degradation contributes to p53-induced growth arrest. These findings strongly point to ERK2 as a novel p53 target in growth suppression.  相似文献   

6.
7.
Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser15 and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser15 phosphorylation is associated with enhanced phosphorylation at Ser46, increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype.  相似文献   

8.
9.
Cellular senescence is characterized by impaired cell proliferation. We have previously shown that, relative to the young counterpart, senescent WI-38 human fibroblasts display a decreased abundance of active phosphorylated ERK (p-ERK) in the nucleus. We have tested the hypothesis that this is due to elevated levels of nuclear MAP kinase phosphatase (MKP) activity in senescent cells. Our results indicate that the activity and abundance of MKP-2 is increased in senescent fibroblasts, compared to their young counterparts. Further analysis indicates that it is MKP-2 protein, but not MKP-2 mRNA level, that is increased in senescent cells. This increase is the result of the increased stability of MKP-2 protein against proteolytic degradation. The degradation of MKPs was impaired by proteasome inhibitors both in young and old WI-38 cells, indicating that proteasome activity is involved in the degradation of MKPs. Finally, our results indicate that proteasome activity, in general, is diminished in senescent fibroblasts. Taken together, these data indicate that the increased level and activity of MKP-2 in senescent WI-38 cells are the consequence of impaired proteosomal degradation, and this increase is likely to play a significant role in the decreased levels of p-ERK in the nucleus of senescent cells.  相似文献   

10.
The mitogen-activated protein kinase cascade operates downstream of Ras to convey cell-surface signals to the nucleus via nuclear translocation of ERK1 and ERK2. We and others have recently demonstrated that activation of ERK1/2 by growth factors is required for proliferation of intestinal epithelial crypt cells. However, it remained to be established whether ERK1/2 activation alone was sufficient to trigger intestinal epithelial cell (IEC) proliferation. To this aim, retrovirus encoding the hemagglutinin-tagged MAPK/ERK kinase (MEK)1 wild type (wtMEK), the upstream activator of ERK1/2, or a constitutively active mutant of MEK1 (MEK1-S218D/S222D; caMEK) were used to infect nonimmortalized human normal intestinal epithelial crypt cell cultures [human intestinal epithelial cells (HIEC)] and rodent immortalized intestinal crypt cells (IEC-6). Stable expression of caMEK but not wtMEK in HIEC led to the irreversible arrest of cellular proliferation (premature senescence). Concomitant with the onset of cell-cycle arrest was the induction of the cyclin-dependent kinase inhibitors p21(Cip), p53, and p16(INK4A). By contrast, overexpression of caMEK in IEC-6 cells induced growth factor relaxation for DNA synthesis, promoted morphological transformation and growth in soft agar, and did not affect expression of p21(Cip), p53, and p16(INK4A). We provided evidences that ERK1b, an alternatively spliced isoform of ERK1, is activated and may contribute to the deregulation of contact inhibition cell growth and transformation of these cells. Constitutive activation of MEK in IECs can produce either premature senescence or forced mitogenesis depending on the integrity of a senescence program controlled by the cell cycle inhibitors p53, p16(INK4A), and p21(CIP).  相似文献   

11.
Cooperation between p53 and p130(Rb2) in induction of cellular senescence   总被引:1,自引:0,他引:1  
To determine pathways cooperating with p53 in cellular senescence when the retinoblastoma protein (pRb)/p16INK4a pathway is defunct, we stably transfected the p16INK4a-negative C6 rat glioma cell line with a temperature-sensitive mutant p53. Activation of p53(Val-135) induces a switch in pocket protein expression from pRb and p107 to p130(Rb2) and stalls the cells in late G1, early S-phase at high levels of cyclin E. Maintenance of the arrest depends on the functions of p130(Rb2) repressing cyclin A. Inactivation of p53 in senescent cultures restores the pocket proteins to initial levels and initiates progression into S-phase, but the cells fail to resume proliferation, likely due to DNA damage becoming apparent in the arrest and activating apoptosis subsequent to the release from p53-dependent growth suppression. The data indicate that p53 can cooperate selectively with p130(Rb2) to induce cellular senescence, a pathway that may be relevant when the pRb/p16INK4a pathway is defunct.  相似文献   

12.
13.
Senescence is a prominent solid tumor response to therapy in which cells avoid apoptosis and instead enter into prolonged cell cycle arrest. We applied a quantitative proteomics screen to identify signals that lead to therapy-induced senescence and discovered that Bcl2-associated athanogene 3 (Bag3) is up-regulated after adriamycin treatment in MCF7 cells. Bag3 is a member of the BAG family of co-chaperones that interacts with Hsp70. Bag3 also regulates major cell-signaling pathways. Mass spectrometry analysis of the Bag3 Complex revealed a novel interaction between Bag3 and Major Vault Protein (MVP). Silencing of Bag3 or MVP shifts the cellular response to adriamycin to favor apoptosis. We demonstrate that Bag3 and MVP contribute to apoptosis resistance in therapy-induced senescence by increasing the level of activation of extracellular signal-regulated kinase1/2 (ERK1/2). Silencing of either Bag3 or MVP decreased ERK1/2 activation and promoted apoptosis in adriamycin-treated cells. An increase in nuclear accumulation of MVP is observed during therapy-induced senescence and the shift in MVP subcellular localization is Bag3-dependent. We propose a model in which Bag3 binds to MVP and facilitates MVP accumulation in the nucleus, which sustains ERK1/2 activation. We confirmed that silencing of Bag3 or MVP shifts the response toward apoptosis and regulates ERK1/2 activation in a panel of diverse breast cancer cell lines. This study highlights Bag3-MVP as an important complex that regulates a potent prosurvival signaling pathway and contributes to chemotherapy resistance in breast cancer.Cellular senescence plays an important role in determining the response of tumors to cancer therapy (1). Senescence is regulated by the p53 and p16-pRB tumor suppressor pathways and characterized by irreversible cell cycle arrest and expression of the lysosomal protein, senescence associated beta galactosidase (SA-β-gal)1. Additional characteristics of senescent cells include the presence of senescence-associated heterochromatic foci, and a senescence associated secretory phenotype (SASP) (2). Because of the SASP of senescent cells, therapy-induced senescence (TIS) may be harmful in cancer and the quantitative elimination of senescent cells could prove to be therapeutically beneficial. A recent study demonstrated that pharmacologically targeting the metabolic pathways of TIS in vivo prompted tumor regression and improved treatment outcomes (3).A characteristic of senescent cells is their ability to resist apoptosis although the responsible mechanism is poorly understood. Impairment of apoptosis in senescent cells is associated with a poor outcome in cancer (4). Manipulation of the apoptotic machinery may serve as a therapeutic means of eliminating senescent cells with harmful SASP. It has been proposed that in senescent cells, p53 may preferentially activate genes that arrest proliferation, rather than those that facilitate apoptosis. Alternatively, resistance to apoptosis may be caused by altered expression of proteins that inhibit, promote, or mediate apoptotic cell death, such as Bcl2.Bcl2 associated athanogene 3 (Bag3) is a member of the BAG family of chaperones that interacts with the ATPase domain of heat shock protein-70 (Hsp70). In addition to its BAG domain, Bag3 contains a WW domain and a proline-rich (PXXP) repeat, which mediates binding to partners other than Hsp70. Bag3 is expressed in response to cellular stress under the induction of HSF1 and is known to suppress apoptosis and regulate autophagy (56). Suppression of apoptosis may be partially explained by the ability of Bag3 to protect Bcl2 family members against proteasomal degradation (7). In normal cells, Bag3 is constitutively expressed in only a few cell types, including cardiomyocytes (8). Bag3 is overexpressed in leukemia and several solid tumors where it has been reported to sustain cell survival, induce resistance to therapy, and promote metastasis. The pleiotropic functions of Bag3 may reflect its ability to assemble scaffolding complexes, which participate in multiple signal transduction pathways (9).In this study, we describe a role for Bag3 in regulating cancer chemotherapy induced senescence in breast cancer cell. Using a quantitative SILAC approach, we show that Bag3 is up-regulated in TIS. Mass spectrometry analysis reveals that Bag3 binds to the Major Vault Protein (MVP) complex, a protein complex strongly associated with chemotherapy resistance. We also show that Bag3 and MVP contribute to apoptosis resistance by regulating ERK1/2 signaling in senescent MCF7 and ZR751 cells.  相似文献   

14.
Developmental disorders characterized by small body size have been linked to CDK5RAP2 loss-of-function mutations, but the mechanisms underlying which remain obscure. Here, we demonstrate that knocking down CDK5RAP2 in human fibroblasts triggers premature cell senescence that is recapitulated in Cdk5rap2an/an mouse embryonic fibroblasts and embryos, which exhibit reduced body weight and size, and increased senescence-associated (SA)-β-gal staining compared to Cdk5rap2+/+ and Cdk5rap2+/an embryos. Interestingly, CDK5RAP2-knockdown human fibroblasts show increased p53 Ser15 phosphorylation that does not correlate with activation of p53 kinases, but rather correlates with decreased level of the p53 phosphatase, WIP1. Ectopic WIP1 expression reverses the senescent phenotype in CDK5RAP2-knockdown cells, indicating that senescence in these cells is linked to WIP1 downregulation. CDK5RAP2 interacts with GSK3β, causing increased inhibitory GSK3β Ser9 phosphorylation and inhibiting the activity of GSK3β, which phosphorylates β-catenin, tagging β-catenin for degradation. Thus, loss of CDK5RAP2 decreases GSK3β Ser9 phosphorylation and increases GSK3β activity, reducing nuclear β-catenin, which affects the expression of NF-κB target genes such as WIP1. Consequently, loss of CDK5RAP2 or β-catenin causes WIP1 downregulation. Inhibition of GSK3β activity restores β-catenin and WIP1 levels in CDK5RAP2-knockdown cells, reducing p53 Ser15 phosphorylation and preventing senescence in these cells. Conversely, inhibition of WIP1 activity increases p53 Ser15 phosphorylation and senescence in CDK5RAP2-depleted cells lacking GSK3β activity. These findings indicate that loss of CDK5RAP2 promotes premature cell senescence through GSK3β/β-catenin downregulation of WIP1. Premature cell senescence may contribute to reduced body size associated with CDK5RAP2 loss-of-function.Subject terms: Senescence, Diseases  相似文献   

15.
The MEK1-ERK1/2 signaling pathway has been implicated in the regulation of renal epithelial cell proliferation, epithelial-to-mesenchymal transition and the induction of an invasive cell phenotype. Much less information is available about the MEK5-ERK5 module and its role in renal epithelial cell proliferation and differentiation. In the present study we have investigated the regulation of these two families of extracellular signal-regulated kinases in epidermal growth factor (EGF)-stimulated human kidney-2 (HK-2) cells and a possible interaction between ERK1/2 and ERK5. Here we report that 5 ng/ml EGF led to a strong stimulation of HK-2 cell proliferation, which was largely U0126-sensitive. Both synthetic MEK1/2 inhibitors U0126 and Cl-1040, when used at 10 and 1 microM, respectively, inhibited basal and EGF-induced ERK1/2 phosphorylation but not ERK5 phosphorylation. Long-term inhibition of MEK1/2-ERK1/2 signaling and/or vanadate-sensitive protein phosphatases enhanced and prolonged EGF-induced ERK5 phosphorylation, while transient expression of an adenoviral constitutively active MEK1 (Ad-caMEK1) construct completely blocked EGF-induced ERK5 phosphorylation. Expression of Ad-caMEK1 in HK-2 cells resulted in the upregulation of the dual-specificity phosphatases MKP-3/DUSP6, MKP-1/DUSP1, and DUSP5. The EGF-mediated time-dependent induction of MKP-3, MKP-1 and DUSP5 mRNA levels was U0126-sensitive at a concentration, which blocked EGF-mediated ERK1/2 phosphorylation but not ERK5 phosphorylation. Furthermore, U0126 inhibited EGF-induced MKP-3 and MKP-1 protein expression. Both MKP-3 and MKP-1 co-immunoprecipitated with ERK5 in unstimulated as well as in EGF-stimulated HK-2 cells. These results suggest the existence of an ERK1/2-driven negative feed-back regulation of ERK5 signaling in EGF-stimulated HK-2 cells, which is mediated by MKP-3, DUSP5 and/or MKP-1.  相似文献   

16.
17.
Ryu SW  Woo JH  Kim YH  Lee YS  Park JW  Bae YS 《FEBS letters》2006,580(3):988-994
  相似文献   

18.
We tested a hypothesis that activation of growth-promoting pathways is required for cellular senescence. In the presence of serum, induction of p21 caused senescence, characterized by beta-Galactosidase staining, cell hypertrophy, increased levels of cyclin D1 and active TOR (target of rapamycin, also known as mTOR). Serum starvation and rapamycin inhibited TOR and prevented the expression of some senescent markers, despite high levels of p21 and cell cycle arrest. In the presence of serum, p21-arrested cells irreversibly lost proliferative potential. In contrast, when cells were arrested by p21 in the absence of serum, they retained the capacity to resume proliferation upon termination of p21 induction. In normal human cells such as WI38 fibroblasts and retinal pigment epithelial (RPE) cells, serum starvation caused quiescence, which was associated with low levels of cyclin D1, inactive TOR and slim-cell morphology. In contrast, cellular senescence with high levels of TOR activity was induced by doxorubicin (DOX), a DNA damaging agent, in the presence of serum. Inhibition of TOR partially prevented senescent phenotype caused by DOX. Thus growth stimulation coupled with cell cycle arrest leads to senescence, whereas quiescence (a condition with inactive TOR) prevents senescence.  相似文献   

19.
Huang J  Gan Q  Han L  Li J  Zhang H  Sun Y  Zhang Z  Tong T 《PloS one》2008,3(3):e1710
Sir2, a NAD-dependent deacetylase, modulates lifespan in yeasts, worms and flies. The SIRT1, mammalian homologue of Sir2, regulates signaling for favoring survival in stress. But whether SIRT1 has the function to influence cell viability and senescence under non-stressed conditions in human diploid fibroblasts is far from unknown. Our data showed that enforced SIRT1 expression promoted cell proliferation and antagonized cellular senescence with the characteristic features of delayed Senescence-Associated beta-galactosidase (SA-beta-gal) staining, reduced Senescence-Associated Heterochromatic Foci (SAHF) formation and G1 phase arrest, increased cell growth rate and extended cellular lifespan in human fibroblasts, while dominant-negative SIRT1 allele (H363Y) did not significantly affect cell growth and senescence but displayed a bit decreased lifespan. Western blot results showed that SIRT1 reduced the expression of p16(INK4A) and promoted phosphorylation of Rb. Our data also exposed that overexpression of SIRT1 was accompanied by enhanced activation of ERK and S6K1 signaling. These effects were mimicked in both WI38 cells and 2BS cells by concentration-dependent resveratrol, a SIRT1 activator. It was noted that treatment of SIRT1-.transfected cells with Rapamycin, a mTOR inhibitor, reduced the phosphorylation of S6K1 and the expression of Id1, implying that SIRT1-induced phosphorylation of S6K1 may be partly for the decreased expression of p16(INK4A) and promoted phosphorylation of Rb in 2BS. It was also observed that the expression of SIRT1 and phosphorylation of ERK and S6K1 was declined in senescent 2BS. These findings suggested that SIRT1-promoted cell proliferation and antagonized cellular senescence in human diploid fibroblasts may be, in part, via the activation of ERK/ S6K1 signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号