首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polarisation of the actin cytoskeleton must cease during cytokinesis, to support efficient assembly and contraction of the actomyosin ring at the site of cell division, but the underlying mechanisms are still understood poorly in most species. In budding yeast, the Mitotic Exit Network (MEN) releases Cdc14 phosphatase from the nucleolus during anaphase, leading to the inactivation of mitotic forms of cyclin-dependent kinase (CDK) and the onset of septation, before G1-CDK can be reactivated and drive re-polarisation of the actin cytoskeleton to a new bud. Here, we show that premature inactivation of mitotic CDK, before release of Cdc14, allows G1-CDK to divert the actin cytoskeleton away from the actomyosin ring to a new site of polarised growth, thereby delaying progression through cytokinesis. Our data indicate that cells normally avoid this problem via the MEN-dependent release of Cdc14, which counteracts all classes of CDK-mediated phosphorylations during cytokinesis and blocks polarised growth. The dephosphorylation of CDK targets is therefore central to the mechanism by which the MEN and Cdc14 initiate cytokinesis and block polarised growth during late mitosis.  相似文献   

2.
Coordination of mitotic exit with timely initiation of cytokinesis is critical to ensure completion of mitotic events before cell division. The Saccharomyces cerevisiae polo kinase Cdc5 functions in a pathway leading to the degradation of mitotic cyclin Clb2, thereby permitting mitotic exit. Here we provide evidence that Cdc5 also plays a role in regulating cytokinesis and that an intact polo-box, a conserved motif in the noncatalytic COOH-terminal domain of Cdc5, is required for this event. Depletion of Cdc5 function leads to an arrest in cytokinesis. Overexpression of the COOH-terminal domain of Cdc5 (cdc5DeltaN), but not the corresponding polo-box mutant, resulted in connected cells. These cells shared cytoplasms with incomplete septa, and possessed aberrant septin ring structures. Provision of additional copies of endogenous CDC5 remedied this phenotype, suggesting a dominant-negative inhibition of cytokinesis. The polo-box-dependent interactions between Cdc5 and septins (Cdc11 and Cdc12) and genetic interactions between the dominant-negative cdc5DeltaN and Cyk2/Hof1 or Myo1 suggest that direct interactions between cdc5DeltaN and septins resulted in inhibition of Cyk2/Hof1- and Myo1-mediated cytokinetic pathways. Thus, we propose that Cdc5 may coordinate mitotic exit with cytokinesis by participating in both anaphase promoting complex activation and a polo-box-dependent cytokinetic pathway.  相似文献   

3.
Dynamin and cytokinesis   总被引:5,自引:0,他引:5  
Animal and plant cytokineses appear morphologically distinct. Recent studies, however, have revealed that these cellular processes have many things in common, including the requirement of co-ordinated membrane trafficking and cytoskeletal dynamics. At the intersection of these two processes are the members of the dynamin family of ubiquitous eukaryotic GTPases. In this review, we highlight the conserved contribution of classical dynamin and dynamin-related proteins during cytokinesis in both animal and plant systems.  相似文献   

4.
Cytokinesis requires the formation of an actomyosin contractile ring between the two sets of sister chromatids. Annexin A2 is a calcium- and phospholipid-binding protein implicated in cortical actin remodeling. We report that annexin A2 accumulates at the equatorial cortex at the onset of cytokinesis and depletion of annexin A2 results in cytokinetic failure, due to a defective cleavage furrow assembly. In the absence of annexin A2, the small GTPase RhoA—which regulates cortical cytoskeletal rearrangement—fails to form a compact ring at the equatorial plane. Furthermore, annexin A2 is required for cortical localization of the RhoGEF Ect2 and to maintain the association between the equatorial cortex and the central spindle. Our results demonstrate that annexin A2 is necessary in the early phase of cytokinesis. We propose that annexin A2 participates in central spindle–equatorial plasma membrane communication.  相似文献   

5.
When centrosomes are destroyed during prophase by laser microsurgery, vertebrate somatic cells form bipolar acentrosomal mitotic spindles (Khodjakov, A., R.W. Cole, B.R. Oakley, and C.L. Rieder. 2000. Curr. Biol. 10:59-67), but the fate of these cells is unknown. Here, we show that, although these cells lack the radial arrays of astral microtubules normally associated with each spindle pole, they undergo a normal anaphase and usually produce two acentrosomal daughter cells. Relative to controls, however, these cells exhibit a significantly higher (30-50%) failure rate in cytokinesis. This failure correlates with the inability of the spindle to properly reposition itself as the cell changes shape. Also, we destroyed just one centrosome during metaphase and followed the fate of the resultant acentrosomal and centrosomal daughter cells. Within 72 h, 100% of the centrosome-containing cells had either entered DNA synthesis or divided. By contrast, during this period, none of the acentrosomal cells had entered S phase. These data reveal that the primary role of the centrosome in somatic cells is not to form the spindle but instead to ensure cytokinesis and subsequent cell cycle progression.  相似文献   

6.
Mitosis in Giardia lamblia: multiple modes of cytokinesis   总被引:3,自引:0,他引:3  
Benchimol M 《Protist》2004,155(1):33-44
Mitosis in Giardia is poorly understood. Until today, it is still controversial whether Giardia divides with a mirror-image symmetry (ventral-ventral or dorsal-dorsal) or in a dorsal-ventral mode. Here, we report the different modes by which cytokinesis takes place in Giardia lamblia. To determine how Giardia divides, video microscopy, scanning electron microscopy, semi-thick sections and freeze-fracture replicas were analyzed by transmission electron microscopy. Between 12 and 15% of the cells cultivated for 24-48 h were found in the process of division. Three types of cytokinesis were found: (1) ventral-ventral, where the discs face each other; (2) dorsal-dorsal, where the discs are in opposite directions; and (3) ventral-dorsal. Giardia divides with mirror-image symmetry either in ventral-ventral or dorsal-dorsal modes. During ventral-ventral type of division, Giardia becomes detached and swims freely in the culture medium, whereas, in the other modes of division, the cells can be found either adhered or swimming.  相似文献   

7.
A major feature of epithelial cell polarity is regulated positioning of the mitotic spindle within the cell. Spindles in cells of symmetrically expanding tissues are predicted to align parallel to the tissue plane. Direct measurement of this alignment has been difficult in mammalian tissues. Here, we analyzed the position of spindles in intact mouse intestinal epithelium using microtubule immunofluorescence and three-dimensional confocal imaging. Mitotic cells were identified in the proliferative zone of intestinal crypts. Spindle angle relative to the apical cell surface was determined either by direct measurement from confocal images or with a computational algorithm. Angles averaged within 10 degrees of parallel to the apical surface in metaphase and anaphase cells, consistent with robust planar spindle positioning, whereas spindles in prometaphase cells showed much greater angle variability. Interestingly, cytokinetic furrows appeared to extend from the basal cell surface toward the apical surface. This type of image analysis may be useful for studying the regulation of spindle position during tissue remodeling and tumor formation.  相似文献   

8.
Vertebrate somatic cells sometimes form unilateral furrows during cytokinesis that ingress from only one edge of the cell. In some cases after a cell initiates a normal symmetrical circumferential furrow, one of its edges stops furrowing and regresses while the furrow associated with the opposing edge continues across the cell. In cells containing two independent spindles unilateral furrows are sometimes formed that do not follow a linear path but instead sharply change their direction and wander for >40 microm through the cell. These observations reveal that the 'contractile ring' normally seen during cytokinesis is composed of multiple independent 'furrowing units' that are normally coordinated to form a symmetrical furrow around the cell, and that once formed this so-called contractile band does not function as a 'purse string' as commonly envisioned. Individual furrowing units can work independently of one another, and cytokinesis in vertebrates can be consummated by the formation of a single functional furrowing unit in a localized region of the cell cortex that is then propagated across the cell. How this propagation occurs remains an important question for the future.  相似文献   

9.
10.
11.
Kinesin-14 motor proteins play a variety of roles during metaphase and anaphase. However, it is not known whether members of this family of motors also participate in the dramatic changes in mitotic spindle organization during the transition from telophase to cytokinesis. We have identified the minus-end-directed motor, KIFC3, as an important contributor to central bridge morphology at this stage. KIFC3’s unique motor-dependent localization at the central bridge allows it to congress microtubules, promoting efficient progress through cytokinesis. Conversely, when KIFC3 function is perturbed, abscission is delayed, and the central bridge is both widened and extended. Examination of KIFC3 on growing microtubules in interphase indicates that it caps microtubules released from the centrosome, both in the region of the centrosome and in the cell periphery. In line with other kinesin-14 family members, KIFC3 may guide free microtubules to their destination at the bridge and/or may slide and crosslink central bridge microtubules in order to stage the cells for abscission.  相似文献   

12.
The ultrastructure of a Xanthonema strain featuring multinucleate cells was investigated by transmission electron microscopy. An important specific feature of the organisation of the photosynthetic apparatus in this strain is its association with mitochondrial profiles. The chloroplast girdle is composed of two different U-shaped lamellae, one peripheral and one subcentral. Multinuclearity is observed as often as the uninucleate state. The transition from the uninucleate to the multinucleate stage is connected to disturbances in the normal division pattern of the parietal chloroplast-mitochondria complex during interphase. As a result mitosis is not coordinated with cytokinesis. The return to the uninucleate stage occurs as a result of asynchronous cytokinesis or by aplanospore formation. Mitosis is of the semi-closed type, as in Tribonema. Centrioles replicate in early interphase, after the end of karyokinesis and progeny nuclei separate with the aid of CER invagination. Filament fragmentation takes place between neighbouring cells where two U-shaped segments adjoin, resulting in fragment ends being rounded rather than ‘zweispitzig’. The taxonomic significance of various ultrastructural features for the classification of filamentous Xanthophyta is discussed.  相似文献   

13.
Comment on: Adhikari D, et al. Hum Mol Gene 2012; 21:2476-84.  相似文献   

14.
Comment on: Adhikari D, et al. Hum Mol Gene 2012; 21:2476-84.  相似文献   

15.
The behaviors of nuclei and microtubules (MT) in Acrosiphonia duriuscula (Ruprecht) Collins were observed in detail using fluorescence and electron microscopy. Numerous nuclei exist in cells of A. duriuscula (multinucleate cells). Cortical MT radiate from the apex of the tip cell and run parallel to its long axis. Between 30 and 40% of nuclei in the upper part of cytoplasm migrate downward to the region where cytokinesis will take place, and these numerous nuclei form a ‘nuclear ring’ before mitosis. The parallel array of the cortical MT changes to a transverse orientation at the region where cytokinesis will take place, and finally forms a characteristic circumferential band. Mitosis starts from the nuclei in the ring. Cortical MT disappear in the region of the nuclear ring and many mitotic spindles form. The band-shaped array of MT remains. Mitosis spreads in an apparent wave to the other nuclei. After mitosis, daughter nuclei that formed a nuclear ring migrate apically and repopulate the apical daughter cell. When the numerous daughter nuclei have relocated, a rearrangement of the cortical MT occurs. They are randomly arranged at first, but finally become parallel to the long axis of the cell. Cytokinesis occurs by furrowing of the cell, and the band-shaped array of MT could be detected at the leading edge of the furrow.  相似文献   

16.
One model for the timing of cytokinesis is based on findings that p34(cdc2) can phosphorylate myosin regulatory light chain (LC20) on inhibitory sites (serines 1 and 2) in vitro (Satterwhite, L.L., M.H. Lohka, K.L. Wilson, T.Y. Scherson, L.J. Cisek, J.L. Corden, and T.D. Pollard. 1992. J. Cell Biol. 118:595-605), and this inhibition is proposed to delay cytokinesis until p34(cdc2) activity falls at anaphase. We have characterized previously several kinase activities associated with the isolated cortical cytoskeleton of dividing sea urchin embryos (Walker, G.R., C.B. Shuster, and D.R. Burgess. 1997. J. Cell Sci. 110:1373-1386). Among these kinases and substrates is p34(cdc2) and LC20. In comparison with whole cell activity, cortical H1 kinase activity is delayed, with maximum levels in cortices prepared from late anaphase/telophase embryos. To determine whether cortical-associated p34(cdc2) influences cortical myosin II activity during cytokinesis, we labeled eggs in vivo with [(32)P]orthophosphate, prepared cortices, and mapped LC20 phosphorylation through the first cell division. We found no evidence of serine 1,2 phosphorylation at any time during mitosis on LC20 from cortically associated myosin. Instead, we observed a sharp rise in serine 19 phosphorylation during anaphase and telophase, consistent with an activating phosphorylation by myosin light chain kinase. However, serine 1,2 phosphorylation was detected on light chains from detergent-soluble myosin II. Furthermore, cells arrested in mitosis by microinjection of nondegradable cyclin B could be induced to form cleavage furrows if the spindle poles were physically placed in close proximity to the cortex. These results suggest that factors independent of myosin II inactivation, such as the delivery of the cleavage stimulus to the cortex, determine the timing of cytokinesis.  相似文献   

17.
Cdk1 activity drives both mitotic entry and the metaphase-to-anaphase transition in all eukaryotes. The kinase Wee1 and the phosphatase Cdc25 regulate the mitotic activity of Cdk1 by the reversible phosphorylation of a conserved tyrosine residue. Mutation of cdc25 in Schizosaccharomyces pombe blocks Cdk1 dephosphorylation and causes cell cycle arrest. In contrast, deletion of MIH1, the cdc25 homolog in Saccharomyces cerevisiae, is viable. Although Cdk1-Y19 phosphorylation is elevated during mitosis in mih1∆ cells, Cdk1 is dephosphorylated as cells progress into G1, suggesting that additional phosphatases regulate Cdk1 dephosphorylation. Here we show that the phosphatase Ptp1 also regulates Cdk1 dephosphorylation in vivo and can directly dephosphorylate Cdk1 in vitro. Using a novel in vivo phosphatase assay, we also show that PP2A bound to Rts1, the budding yeast B56-regulatory subunit, regulates dephosphorylation of Cdk1 independently of a function regulating Swe1, Mih1, or Ptp1, suggesting that PP2ARts1 either directly dephosphorylates Cdk1-Y19 or regulates an unidentified phosphatase.  相似文献   

18.
Cdk1 is essential for mammalian cyclosome/APC regulation   总被引:8,自引:0,他引:8  
The cyclosome/APC (anaphase-promoting complex), the major component of cell-cycle-specific ubiquitin-mediated proteolysis of mitotic cyclins and of other cell cycle proteins, is essential for sister chromatid separation and for exit from mitosis. Cyclosome activity and substrate specificity are modulated by phosphorylation and by transient interactions with Fizzy/cdc20 (Fzy) and Fizzy-related/Hct1/Cdh1 (Fzr). This regulation has been studied so far in Drosophila embryos, in yeast, and in cell-free extracts in vitro. Studying cyclosome regulation in mammalian cells in vivo we found that both Fzr overexpression and Cdk1 inhibition can override the prometaphase checkpoint. We further show that Fzr activation of the cyclosome is negatively regulated by Cdk1. Finally, we show that the mammalian cdc14 phosphatase, like its budding yeast homologue, plays a role in cyclosome pathway regulation. These results suggest that Cdk1 is essential for coupling various activities of the cyclosome and in particular for preventing Fzr from short-circuiting the spindle pole checkpoint. Cdk1-cyclin B is thus an inhibitor, activator, and substrate of the cyclosome.  相似文献   

19.
Bacteriophage (phage) are ubiquitous in the water column and in the sediments of most natural water. Because of their colloidal nature, they can either aggregate into clumps large enough to settle into the sediment or departing upon the physiochemical conditions or disassociate and reenter the water column. About 80% of the bacterial strains isolated from New River sediment have a virulent phage that can be isolated with them.Liquid cultures of a strain of Pseudomonas aeruginosa isolated from the New River along with its phage were set up. One was infected with the virulent phage and another kept as a control. Daily counts were made of bacterial numbers. After 10 days the control culture was infected and counted for 3 more days.Both cultures divided exponentially at first. The infected culture continued to divide at about half the initial rate. The uninfected culture nearly ceased division, but when phage were added it quickly began to divide.The virulent phage infection clearly stimulated host division. The effect was to establish itself as an endemic infection which did not outpace its host's division rate. Further, the enhanced division rate may act to increase the host's share of available nutrients and benefit its competitive position in the system.  相似文献   

20.
蛋白磷酸酶4在人肺癌细胞A549增殖中的功能分析   总被引:2,自引:0,他引:2  
蛋白磷酸酶4(PP4)是PP2A亚家族的重要成员之一.已有研究表明PP4在果蝇与线虫中参与了中心体成熟,但作为一个进化上高度保守的蛋白质,PP4在哺乳动物细胞中的确切功能至今仍知之甚少.选择人肺癌细胞A549为材料,转染发夹型siRNA表达质粒,筛选鉴定获得了PP4表达抑制细胞株,然后对细胞的形态、生长特性及有丝分裂过程进行观察分析.与对照细胞相比,发现其生长速率明显减慢,细胞群体中DNA含量为4N的细胞比率明显增高.这一结果是由细胞群体中出现了高比例的多核细胞造成的,进一步的分析揭示,高比例多核细胞的产生是由于PP4表达下降,致使细胞有丝分裂和胞质分裂受到严重干扰所导致的.由此推测PP4对于保证细胞有丝分裂及胞质分裂的正常进行具有重要作用,PP4受到抑制将会导致多核细胞的产生,进而抑制A549细胞的增殖.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号