首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigating intraspecific variation in acoustic signals can indicate the extent of isolation and divergence between populations and adaptations to local environments. Here we analyze the variation in killer whale high‐frequency (>17 kHz) whistles recorded off Norway, Iceland, and in the North Pacific. We used a combination of methods including multivariate comparisons of spectral and temporal parameters and categorization of contours to types. Our results show that spectral and temporal characteristics of high‐frequency whistles recorded in the North Pacific show significant differences from whistles recorded in the Northeast Atlantic, being generally stereotyped, lower in frequency, and slightly longer in duration. Most high‐frequency whistles from the North Pacific were downsweeps, whereas this was one of the least common types recorded in the Northeast Atlantic. The repertoire of whistles recorded in Norway was similar to Iceland, but whistles produced in Norway had significantly lower maximum frequency and frequency range. Most methods were able to discriminate between whistles of the North Pacific and the Northeast Atlantic, but were unable to consistently distinguish whistles from Iceland and Norway. This suggests that macro‐ and microgeographic differences in high‐frequency whistles of killer whales may reflect historical geographic isolation between ocean basins and more recent divergence between adjacent populations.  相似文献   

2.
Geographic variation in the reproductive traits of animal‐pollinated plants can be shaped by spatially variable selection imposed by differences in the local pollination environment. We investigated this process in Babiana ringens (Iridaceae), an enigmatic species from the Western Cape region of South Africa. B. ringens has evolved a specialized perch facilitating cross‐pollination by sunbirds and displays striking geographic variation in perch size and floral traits. Here, we investigate whether this variation can be explained by geographic differences in the pollinator communities. We measured floral and inflorescence traits, and abiotic variables (N, P, C, and rainfall) and made observations of sunbirds in populations spanning the range of B. ringens. In each population, we recorded sunbird species identity and measured visitation rates, interfloral pollen transfer, and whether the seed set of flowers was pollen limited. To evaluate whether competition from co‐occurring sunbird‐pollinated species might reduce visitation, we quantified nectar rewards in B. ringens and of other co‐flowering bird‐pollinated species in local communities in which populations occurred. Variation in abiotic variables was not associated with geographical variation of traits in B. ringens. Malachite sunbirds were the dominant visitor (97% of visits) and populations with larger‐sized traits exhibited higher visitation rates, more between‐flower pollen transfer and set more seed. No sunbirds were observed in four populations, all with smaller‐sized traits. Sunbird visitation to B. ringens was not associated with local sunbird activity in communities, but sunbird visitation was negatively associated with the amount of B. ringens sugar relative to the availability of alternative nectar sources. Our study provides evidence that B. ringens populations with larger floral traits are visited more frequently by sunbirds, and we propose that visitation rates to B. ringens may be influenced, in part, by competition with other sunbird‐pollinated species.  相似文献   

3.
Taxa with large geographic distributions generally encompass diverse macroclimatic conditions, potentially requiring local adaptation and/or phenotypic plasticity to match their phenotypes to differing environments. These eco‐evolutionary processes are of particular interest in organisms with traits that are directly affected by temperature, such as embryonic development in oviparous ectotherms. Here we examine the spatial distribution of fitness‐related early life phenotypes across the range of a widespread vertebrate, the painted turtle (Chrysemys picta). We quantified embryonic and hatchling traits from seven locations (in Idaho, Minnesota, Oregon, Illinois, Nebraska, Kansas, and New Mexico) after incubating eggs under constant conditions across a series of environmentally relevant temperatures. Thermal reaction norms for incubation duration and hatchling mass varied among locations under this common‐garden experiment, indicating genetic differentiation or pre‐ovulatory maternal effects. However, latitude, a commonly used proxy for geographic variation, was not a strong predictor of these geographic differences. Our findings suggest that this macroclimatic proxy may be an unreliable surrogate for microclimatic conditions experienced locally in nests. Instead, complex interactions between abiotic and biotic factors likely drive among‐population phenotypic variation in this system. Understanding spatial variation in key life‐history traits provides an important perspective on adaptation to contemporary and future climatic conditions.  相似文献   

4.
Neural identity and wiring specificity are fundamental to brain function. Factors affecting proliferation of the progenitor cells leading to an expansion or regression of specific neuronal clusters are expected to challenge the process of formation of precise synaptic connections with their partners and their further integration to result in proper functional neural circuitry. We have investigated the role of scalloped, a Hippo pathway gene in Drosophila brain development and have shown that its function is critical to regulate proliferation of Mushroom Body Neuroblasts and to limit the neuronal cluster size to normal in the fly brain. Here we investigate the consequent effect of the anatomical phenotype of mutant flies on the brain function, as exemplified by their cognitive performance. We demonstrate that the neural expansion in important neural clusters of the olfactory pathway, caused due to Scalloped inactivation, imparts severe disabilities in learning, short‐term memory and long‐term memory. Scalloped knockdown in αβ Kenyon Cell clusters drastically reduces long‐term memory performance. Scalloped deficiency induced neural expansion in antennal lobe and ellipsoid body neurons bring down short‐term memory performance significantly. We also demonstrate that the cognitive impairments observed here are not due to a problem in memory formation or execution in the adult, but are due to the developmental deformities caused in the respective class of neurons. Our results strongly indicate that the additional neurons generated by Scalloped inactivation are not synergistically integrated into, but rather perturb the formation of precise functional circuitry.  相似文献   

5.
6.
Checkerspot butterflies in the genera Euphydryas and Chlosyne exhibit phenotypic polymorphisms along a well‐defined latitudinal and elevational gradient in California. The patterns of phenotypic variation in Euphydryas chalcedona, Chlosyne palla, and Chlosyne hoffmanni suggest a mimetic relationship; in addition, the specific patterns of variation in C. palla suggest a female‐limited polymorphic mimicry system (FPM). However, the existence of polymorphic models runs counter to predictions of mimicry theory. Palatability trials were undertaken to assess whether or not the different color morphs of each species were distasteful or toxic to a generalized avian predator, the European starling (Sturnus vulgaris). Results indicate that the black morph of E. chalcedona is distasteful, but not toxic, to predators, while the red morph is palatable. C. hoffmanni and both color morphs of C. palla are palatable to predators. Predators that learn to reject black E. chalcedona also reject black C. palla, suggesting that the latter is a FPM of the former. C. hoffmanni does not appear to be involved in this mimetic relationship.  相似文献   

7.
The temporal aspects of life cycle characteristics, such as diapause development, are under strong selection in seasonal environments. Fine‐tuning of the life cycle may be particularly important to match the phenology of potential mates and resources as well as for optimizing abiotic conditions at eclosion. Here, we experimentally study the spring phenology of the orange tip butterfly, Anthocharis cardamines, by analysing post‐winter pupal development in three populations along a latitudinal cline in each of Sweden and the United Kingdom. These countries differ substantially in their seasonal temperature profile. By repeatedly recording pupal weights, we established that post‐winter development has two separate phases, with a more rapid weight loss in the second phase than in the first, likely corresponding to a ramping up of the rate of development. Variation in the duration of the first phase contributed more strongly than the second phase to the differences in phenology between the localities and sexes. We found that insects from Sweden had a faster overall rate of development than those from the United Kingdom, which is consistent with countergradient variation, as Sweden is colder during the spring than the United Kingdom. Similar trends were not observed at the within‐country scale, however. A cogradient pattern was found within Sweden, with populations from the north developing more slowly, and there was no clear latitudinal trend within the United Kingdom. In all localities, males developed faster than females. Our results point to the importance of variation in the progression of post‐winter development for spring phenology.  相似文献   

8.
In the course of the ongoing global intensification and diversification of human pressures, the study of variation patterns of biological traits along environmental gradients can provide relevant information on the performance of species under shifting conditions. The pronounced salinity gradient, co‐occurrence of multiple stressors, and accelerated rates of change make the Baltic Sea and its transition to North Sea a suitable region for this type of study. Focusing on the bladderwrack Fucus vesiculosus, one of the main foundation species on hard‐bottoms of the Baltic Sea, we analyzed the phenotypic variation among populations occurring along 2,000 km of coasts subjected to salinities from 4 to >30 and a variety of other stressors. Morphological and biochemical traits, including palatability for grazers, were recorded at 20 stations along the Baltic Sea and four stations in the North Sea. We evaluated in a common modeling framework the relative contribution of multiple environmental drivers to the observed trait patterns. Salinity was the main and, in some cases, the only environmental driver of the geographic trait variation in F. vesiculosus. The decrease in salinity from North Sea to Baltic Sea stations was accompanied by a decline in thallus size, photosynthetic pigments, and energy storage compounds, and affected the interaction of the alga with herbivores and epibiota. For some traits, drivers that vary locally such as wave exposure, light availability or nutrient enrichment were also important. The strong genetic population structure in this macroalgae might play a role in the generation and maintenance of phenotypic patterns across geographic scales. In light of our results, the desalination process projected for the Baltic Sea could have detrimental impacts on F. vesiculosus in areas close to its tolerance limit, affecting ecosystem functions such as habitat formation, primary production, and food supply.  相似文献   

9.
10.
Sex ratio theory attempts to explain observed variation in offspring sex ratio at both the population and the brood levels. In the context of low‐fecundity organisms producing high‐investment offspring, the drivers of adaptive variation in sex ratio are incompletely understood. For raptors that display reverse sexual dimorphism (RSD), preferential allocation of resources to the putatively cheaper sex (male) may be a response to environmental, social or demographic stressors. To assess the extent of skew in offspring sex ratios and to evaluate possible dietary, environmental and demographic correlates of such skew to long‐lived RSD avian species, we evaluated the offspring sex ratio of 219 chicks from 119 broods in 30 territories of Eastern Imperial Eagles Aquila heliaca across 7 years and four regions at a nature reserve in Kazakhstan. Only in one region in 1 year of our study did the offspring sex ratio differ significantly from parity (10 males : 1 female in 11 territories). Whereas offspring sex ratios were independent of dietary diversity, precipitation, temperature and productivity, we found that year had a moderate effect on brood sex ratio within territories. Our results provide limited evidence of brood sex manipulation in these populations of Eastern Imperial Eagles, and no mechanistic insight into predictions associated with it. Stochastic variation is likely to explain much of the fluctuation we observed in sex ratios, but our observations are also consistent with the hypothesis that sex‐ratio manipulation may occur irregularly, in concurrence with atypical environmental or demographic conditions that fluctuate at a time scale longer than that of our 7‐year study.  相似文献   

11.
Polysaccharides (PF) from marine macroalgae, Caulerpa scalpelliformis were extracted and tested for its potential immunostimulatory and disease resistance properties in fish. Five groups of Nile tilapia (n = 6), Oreochromis niloticus (Linnaeus, 1758) were intraperitoneally administered with the different doses of PF (2, 20 or 200 mg/kg body weight) or with yeast‐derived commercial immunostimulant, Macrogard? (20 mg/kg body weight), to compare the effectiveness. An untreated control group was also maintained. A total of fifteen fibre reinforced plastic tanks (150 L, ambient temperature and light conditions) were used, with triplicate tanks for each group. Only four fish per tank (totally 12 fish from a group) were taken at random and assayed. PF enhanced all the tested non‐specific serum immune responses namely lysozyme, myeloperoxidase, antiprotease, and bactericidal activities. There was an upregulation of the genes encoding IL‐1β, lysozyme and TNF‐α in the spleen of PF injected fish as compared to the control group. In order to study the overall functional immunity, disease resistance test was conducted. Another five groups of fish (n = 10) were treated by intraperitoneal injection with different doses of PF or Macrogard? or untreated as mentioned earlier in triplicates (30 fish per group in three tanks, totally 150 fish in 15 tanks). Seven days post treatment, fish were challenged by intraperitoneal administration of live virulent Aeromonas hydrophila. PF treated fish were protected with significant reduction in the mortality and the consequent increased relative percent survival (RPS) of 92 in the least (2 mg/kg) and middle dose (20 mg/kg) groups. The disease resistance experiment was repeated again but this time, fish were challenged 21 days post treatment that resulted in RPS of 50 for the middle dose. The results clearly show that the intraperitoneal administration of the polysaccharide fraction had a stimulating effect on the non‐specific immune responses, immune gene expression and disease resistance.  相似文献   

12.
Among social insects, colony‐level variation is likely to be widespread and has significant ecological consequences. Very few studies, however, have documented how genetic factors relate to behaviour at the colony level. Differences in expression of the foraging gene have been associated with differences in foraging and activity of a wide variety of organisms. We quantified expression of the red imported fire ant foraging gene (sifor) in workers from 21 colonies collected across the natural range of Texas fire ant populations, but maintained under standardized, environmentally controlled conditions. Colonies varied significantly in their behaviour. The most active colonies had up to 10 times more active foragers than the least active colony and more than 16 times as many workers outside the nest. Expression differences among colonies correlated with this colony‐level behavioural variation. Colonies with higher sifor expression in foragers had, on average, significantly higher foraging activity, exploratory activity and recruitment to nectar than colonies with lower expression. Expression of sifor was also strongly correlated with worker task (foraging vs. working in the interior of the nest). These results provide insight into the genetic and physiological processes underlying collective differences in social behaviour. Quantifying variation in expression of the foraging gene may provide an important tool for understanding and predicting the ecological consequences of colony‐level behavioural variation.  相似文献   

13.
The fecundity‐advantage hypothesis (FAH) explains larger female size relative to male size as a correlated response to fecundity selection. We explored FAH by investigating geographic variation in female reproductive output and its relation to sexual size dimorphism (SSD) in Lacerta agilis, an oviparous lizard occupying a major part of temperate Eurasia. We analysed how sex‐specific body size and SSD are associated with two putative indicators of fecundity selection intensity (clutch size and the slope of the clutch size–female size relationship) and with two climatic variables throughout the species range and across two widespread evolutionary lineages. Variation within the lineages provides no support for FAH. In contrast, the divergence between the lineages is in line with FAH: the lineage with consistently female‐biased SSD (L. a. agilis) exhibits higher clutch size and steeper fecundity slope than the lineage with an inconsistent and variable SSD (L. a. exigua). L. a. agilis shows lower offspring size (egg mass, hatchling mass) and higher clutch mass relative to female mass than L. a. exigua, that is both possible ways to enhance offspring number are exerted. As the SSD difference is due to male size (smaller males in L. a. agilis), fecundity selection favouring larger females, together with viability selection for smaller size in both sexes, would explain the female‐biased SSD and reproductive characteristics of L. a. agilis. The pattern of intraspecific life‐history divergence in L. agilis is strikingly similar to that between oviparous and viviparous populations of a related species Zootoca vivipara. Evolutionary implications of this parallelism are discussed.  相似文献   

14.
As ecology and evolution become ever more entwined, many areas of ecological theory are being re‐examined. Eco‐evolutionary analyses of classic coexistence mechanisms are yielding new insights into the structure and stability of communities. We examine fluctuation‐dependent coexistence models, identifying communities that are both ecologically and evolutionarily stable. Members of these communities possess distinct environmental preferences, revealing widespread patterns of limiting similarity. This regularity leads to consistent changes in the structure of communities across fluctuation regimes. However, at high amplitudes, subtle differences in the form of fluctuations dramatically affect the collapse of communities. We also show that identical fluctuations can support multiple evolutionarily stable communities – a novel example of alternative stable states within eco‐evolutionary systems. Consequently, the configuration of communities will depend on historical contingencies, including details of the adaptive process. Integrating evolution into the study of coexistence offers new insights, while enriching our understanding of ecology.  相似文献   

15.
Avian frugivores historically played important roles as seed dispersers across the Hawaiian Islands, but presently, the ‘ōma‘o (Myadestes obscurus) is the only extant native frugivore in the wild on the Island of Hawaii. During recent decades, the introduced generalist Japanese White‐eye (Zosterops japonicus) has become the most common bird in Hawaii. The movements of avian frugivores largely dictate how far seeds get dispersed and into what kinds of microhabitats. This study compares the movement patterns and diet of the ‘ōma‘o to the Japanese White‐eye to understand how a native differs from a non‐native frugivore in the type and distances of seeds dispersed. Radiotelemetry was conducted on nine ‘ōma‘o and nine Japanese White‐eyes in a system of natural forest fragments (kīpuka) created by lava flows. Japanese White‐eyes disperse seeds approximately twice as far as ‘ōma‘o; during the time of gut passage, ‘ōma‘o move a mean distance of 98.1 m, and Japanese White‐eyes move 170.1–194.8 m. However, the ‘ōma‘o disperses the seeds of at least seven different native fruit species compared with two dispersed by Japanese White‐eyes. Japanese White‐eyes were found to disperse seeds smaller than 1.5 mm, whereas the ‘ōma‘o dispersed seeds up to 6 mm in diameter. Despite their ecological differences, both birds distribute certain seeds within and among kīpuka and likely facilitate primary succession of fruiting plants in the young lava matrix. However, this study suggests that if the ‘ōma‘o were extirpated, a smaller‐bodied generalist cannot entirely substitute for the ecological role played by the native frugivore.  相似文献   

16.
The neuronal endocannabinoid system is known to depress synaptic inputs retrogradely in an activity‐dependent manner. This mechanism has been generally described for excitatory glutamatergic and inhibitory GABAergic synapses. Here, we report that neurones in the auditory brainstem of the Mongolian gerbil (Meriones unguiculatus) retrogradely regulate the strength of their inputs via the endocannabinoid system. By means of whole‐cell patch‐clamp recordings, we found that retrograde endocannabinoid signalling attenuates both glycinergic and glutamatergic post‐synaptic currents in the same types of neurones. Accordingly, we detected the cannabinoid receptor 1 in excitatory and inhibitory pre‐synapses as well as the endocannabinoid‐synthesising enzymes (diacylglycerol lipase α/β, DAGLα/β) post‐synaptically through immunohistochemical stainings. Our study was performed with animals aged 10–15 days, that is, in the time window around the onset of hearing. Therefore, we suggest that retrograde endocannabinoid signalling has a role in adapting inputs during the functionally important switch from spontaneously generated to sound‐related signals.

  相似文献   


17.
18.
Seed mass and morphology are plant life history traits that influence seed dispersal ability, seeding establishment success, and population distribution pattern. Southeastern Tibet is a diversity center for Rhododendron species, which are distributed from a few hundred meters to 5500 m above sea level. We examined intra‐ and interspecific variation in seed mass and morphology in relation to altitude, habitat, plant height, and phylogeny. Seed mass decreased significantly with the increasing altitude and increased significantly with increasing plant height among populations of the same species. Seed mass differed significantly among species and subsections, but not among sections and subgenera. Seed length, width, surface area, and wing length were significantly negative correlated with altitude and significantly positive correlated with plant height. Further, these traits differed significantly among habitats and varied among species and subsection, but not among sections and subgenera. Species at low elevation had larger seeds with larger wings, and seeds became smaller and the wings of seeds tended to be smaller with the increasing altitude. Morphology of the seed varied from flat round to long cylindrical with increasing altitude. We suggest that seed mass and morphology have evolved as a result of both long‐term adaptation and constraints of the taxonomic group over their long evolutionary history.  相似文献   

19.
Many plants have a self‐incompatibility (SI) system in which the rejection of self‐pollen is determined by multiple haplotypes at a single locus, termed S. In the Solanaceae, each haplotype encodes a single ribonuclease (S‐RNase) and multiple S‐locus F‐box proteins (SLFs), which function as the pistil and pollen SI determinants, respectively. S‐RNase is cytotoxic to self‐pollen, whereas SLFs are thought to collaboratively recognize non‐self S‐RNases in cross‐pollen and detoxify them via the ubiquitination pathway. However, the actual mechanism of detoxification remains unknown. Here we isolate the components of a SCFSLF (SCF = SKP1‐CUL1‐F‐box‐RBX1) from Petunia pollen. The SCFSLF polyubiquitinates a subset of non‐self S‐RNases in vitro. The polyubiquitinated S‐RNases are degraded in the pollen extract, which is attenuated by a proteasome inhibitor. Our findings suggest that multiple SCFSLF complexes in cross‐pollen polyubiquitinate non‐self S‐RNases, resulting in their degradation by the proteasome.  相似文献   

20.
Evidence of sexual dimorphism in body size and the existence of morphological differences were studied in the yellow‐whiskered Greenbul Andropadus latirostris. We measured fresh body weight and seven linear parameters of external morphology in mature individuals of this species from three localities in Cameroon and two localities in Ghana. Based on general linear model analysis, we showed that males are significantly larger than females. We applied a discriminant analysis on eight morphometric parameters to create two discriminant functions, one for each country. The overall rate of well‐classified birds was 93.3% for Cameroon and 92.7% for Ghana. Wing length was the most accurate character for separating the sexes in both study areas. Significant sexual size dimorphism might be explained by sexual selection on male competitive ability and intraspecific competition. We also found morphological divergence in this species between the two study areas, including marked differences in size of the beak. This work provides statistical evidence of a substantial sexual size dimorphism in A. latirostris and geographic variation in morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号