首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The long‐term performance of measures to restore in‐stream habitat in gravel bed rivers is uncertain in the presence of impoundments, land use pressures, and fine sediment inputs. The goal of this study was to evaluate the longer‐term performance of five bottom ramps, designed to facilitate fish passage, and constructed similarly to artificial riffles to provide compensatory gravel riverbed habitat for benthic invertebrates and lithophilic, coarse‐substrate‐preferring fish in a channelized lowland river. Bottom ramp age did not significantly influence habitat conditions indicated by a lack of correlations with the percentage of fine sediment less than 2 mm, the organic content of the substrate, and the years since construction. A significant decrease in the relative abundances of coarse‐substrate‐preferring benthic invertebrates corresponding to project construction age was found, but there were no significant differences in the density of rheophilic, fast‐flow‐preferring or lithophilic fish species among sites. This study presents substantial evidence that similarly constructed bottom ramps in comparable environmental settings provided sufficient habitat for sensitive benthic invertebrates and fish to be present for over 13 years. However, a sudden decrease in habitat suitability cannot be excluded in the long‐term if there is a fine sediment deposition threshold, which results in ramps becoming full. Nevertheless, bottom ramps are recommended as effective measures to enhance longitudinal connectivity, fish passage, and gravel habitat provision in channelized lowland rivers.  相似文献   

2.
1. Anthropogenic disturbances of the physical habitat and corresponding effects on fish performance are key issues in stream conservation and restoration. Reduced habitat complexity because of increased sediment loadings and canalization is of particular importance, but it is not clear to what extent fish populations are influenced directly by changes in the physical environment, or indirectly through changes in the biotic environment affecting the food availability. 2. Here, we test for the direct effect of habitat complexity on the performance (growth) of juvenile Atlantic salmon by manipulating shelter availability (interstitial spaces in the substrate) across 20 semi‐natural stream channels without altering the substrate composition, and stocking each channel with a common density of fish. A simple method for measuring salmonid shelters using flexible PVC tubes was developed and tested. Daytime sheltering behaviour and growth rates were compared across the channels differing in shelter availability. 3. Measured shelter availability was strongly negatively correlated with observed number of fish not finding shelters and mass loss rates of the fish (growth performance) increased with decreasing number of measured shelters. Number and mean depth of interstitial spaces explained up to 68% and 24% of the among‐channel variation in sheltering behaviour and growth performance, respectively. Furthermore, negative effects of shelter reduction increased with fish body size. Thus, changes in habitat structure may even influence the size selection gradients. 4. Shelter availability is an easily measured variable, possibly affecting the population demographics and long‐term evolutionary processes, and is therefore a key habitat factor to be considered in stream restoration and habitat classification.  相似文献   

3.
Guppies (Poecilia reticulata) are frequently introduced to both natural and artificial water bodies as a mosquito control. Laboratory studies have demonstrated that guppies can consume large numbers of larval mosquitoes. Our study investigates how intraspecific variability in guppy phenotype affects their importance as a mosquito biocontrol and how habitat conditions (natural ponds vs. water storage containers) may influence insect biomass and guppy feeding. Using a blocked experimental design, we established stream‐side mesocosm ponds with half receiving gravel substrate to simulate pond‐bottom habitat. To provide realistic diet choices and insect abundances, we allowed the mesocosms to colonize naturally with aquatic insect larvae for 1 month before introducing guppies. We tested two distinct guppy phenotypes (from high‐ and low‐predation streams) alongside fish‐free controls. After 1 month, we measured insect biomass in the mesocosms and examined guppy gut contents to document direct predation. While overall insect biomass was not significantly different across the three fish treatments, we observed a significant reduction in mosquito biomass in fish treatments compared to fish‐free controls, as well as intraspecific differences in feeding. Overall insect biomass was significantly higher in mesocosms without gravel, while habitat condition had no effect on mosquito biomass. As guppy phenotype responds to changes in their environments, it is an important consideration for biocontrol policy to anticipate potential ecosystem effects. We close by relating our findings to other studies and by discussing the implications and potential risks of using guppies to control mosquitoes.  相似文献   

4.
1. Habitat complexity is thought to exert a significant influence on ecological communities, but its operation under variable natural conditions is not well understood, particularly in freshwater. To elucidate the role of habitat complexity, in particular the fractal structure of surface irregularity, in a stream system, field colonisation experiments were conducted at three times of year (summer, winter and spring) using natural substrates with different levels of fractal dimension in a small coastal mountain stream of southern Japan. 2. In the winter experiment, comparison was also made between the standard (control) treatment and the resource‐preconditioning treatment whereby experimental plates were conditioned in the natural stream environment to allow the accumulation of potential food resources (algae and detritus) for 1 month prior to the experiment. 3. Species abundance patterns observed at different times of year showed little systematic variation with levels of habitat complexity but largely followed the patterns expected from, or lying in between, the Random Assortment model and the random fraction model. 4. Taxon richness and density increased with habitat complexity in all seasons except for density in spring. Different taxa showed different patterns of change with habitat complexity, which also varied with seasons. Biomass of invertebrates showed no systematic trend with an increase in habitat complexity. 5. Chlorophyll‐a concentrations tended to be lower in more complex habitats, particularly in summer. In contrast, fine particulate organic matter (FPOM) tended to increase with habitat complexity. However, the relationship between these potential food resources and invertebrate assemblages remain unclear. 6. While there were no significant differences in taxon richness and biomass of invertebrates between the resource‐preconditioning and the control treatment, density was higher in the former than in the latter. The abundance of relatively large, surface‐dwelling animals showed more marked temporal variation over the entire period of colonisation in the resource‐preconditioning treatment than in the control treatment. 7. Body size of invertebrates tended to decline with fractal complexity, indicating that crevice sizes could affect habitat use by benthic animals of different sizes. In addition, body size was larger in the resource‐preconditioning treatment than in the control treatment, suggesting that body size in invertebrate assemblages was controlled by a mixture of factors. Thus, the present study demonstrates that habitat structure affects benthic invertebrate assemblages in a complex manner.  相似文献   

5.
Gething  Kieran J.  Ripley  Matthew C.  Mathers  Kate L.  Chadd  Richard P.  Wood  Paul J. 《Hydrobiologia》2020,847(20):4273-4284

Artificial drainage ditches are common features in lowland agricultural catchments that support a wide range of ecosystem services at the landscape scale. Current paradigms in river management suggest activities that increase habitat heterogeneity and complexity resulting in more diverse floral and faunal assemblages; however, it is not known if the same principles apply to artificial drainage ditch systems. We examined the effects of four artificial substrates, representing increasing habitat complexity and heterogeneity (bricks, gravel, netting and vegetation), on macroinvertebrate community structure within artificial drainage ditches. Each substrate type supported a distinct macroinvertebrate community highlighting the importance of habitat heterogeneity in maintaining macroinvertebrate assemblages. Each substrate type also displayed differing degrees of community heterogeneity, with gravel communities being most variable and artificial vegetation being the least. In addition, several macroinvertebrate diversity metrics increased along the gradient of artificial substrate complexity, although these differences were not statistically significant. We conclude that habitat management practices that increase habitat complexity are likely to enhance macroinvertebrate community heterogeneity within artificial drainage channels regardless of previous management activities.

  相似文献   

6.
This study compared the effects of interference competition in habitats of different complexity and in different densities. The influence of fish density and habitat structure was examined in manipulative experiments using young-of-the-year white spotted charr Salvelinus leucomaenis as a model species. The difference of specific growth rate ( G ) range, an index of interference competitive intensity, was significantly smaller in the structurally complex treatments than structurally simple treatments, while there were no significant difference between high-density and low-density treatments. Thus, physical habitat structure was more effective for mitigating interference competition than manipulating competitor density. Although interference competition was not affected by competitor density, mean G were suppressed in the high-density treatments. This implied that exploitative competition may cause the decrease of G rather than interference competition does in the high-density treatments. Mean G were also suppressed in the structurally complex treatments. Chaotic flow pattern created by physical habitat structures may decrease G by reducing foraging success of experimental fish in the complex treatments.  相似文献   

7.
We examined variation in growth and habitat use of individually PIT‐tagged brown trout Salmo trutta in three stream enclosures, each divided into a fine substrate, deep pool habitat and a coarse substrate, shallow habitat. Habitat use and movements of individual fish were monitored continually by placing PIT detectors between habitats. All fish were measured and weighed biweekly over a three month period. There was no significant relationship between habitat use and initial body size, nor was there a consistent relationship between habitat use and densities of benthic macroinvertebrates or abundance of drifting invertebrates in the two habitats. Most habitat changes occurred at night, with activity peaks just prior to sunrise and after sunset. Trout used pools more at night than during the day. Within any given day, diurnal and nocturnal habitat use of individual fish varied little, with variation greater at night than during the day. Partial habitat segregation by sex was observed; only males used pools extensively during daytime, whereas males and females used riffles.
Growth rate was positively related to use of pools during daytime but not at night. Growth rate was also affected by enclosure, with growth rates being highest in the most downstream enclosure, which had the deepest pool (mean of 42 cm) and lowest in the most upstream enclosure, which had the shallowest pool (mean of 28 cm). A complete exchange of trout between the most upstream and downstream enclosure indicated that the enclosure effect was due to physical differences and not to individual fish differences between enclosures. The effect appears to have been caused by differences in depth as daytime use of pools was correlated with the area of the pool ≥35 cm deep, and production of trout biomass per enclosure was directly related to mean pool depth. Our results suggest that there is a relationship between habitat use and growth of individuals that is independent of body size, but that this relationship is influenced by sex of the fish and by the physical characteristics of the environment. Further, the data indicate that short‐term behavioral decisions on habitat use by brown trout have a potential effect on longer‐term individual fitness through growth rates.  相似文献   

8.
Human‐induced erosion regularly delivers massive quantities of fine sediments into streams and rivers forming large static bodies of sediment known as sand slugs, which smother in‐stream habitat, alter community structure, and decrease biodiversity. Sand slugs are widespread in parts of southeastern Australia as well as in many other parts of the world, and there is now considerable interest in restoring such affected streams. The reintroduction of large timber is widely suggested as a strategy for restoring habitat complexity, but this has rarely been tested in sand slug–affected streams. We examined the response of fish populations to wood addition to two streams in southeastern Australia that have been impacted by sand slugs. Manipulated sites (three per treatment) had either one or four timber structures added, and these sites were compared with (three) unmanipulated (control) sites before and after the manipulation occurred. Despite a supraseasonal drought during the study, we observed short‐term increases in the abundance of Mountain galaxias (Galaxias olidus) at the four‐structure sites, while both the four‐structure and the one‐structure treatments appeared to buffer against drought‐induced declines in two other species, River blackfish (Gadopsis marmoratus) and Southern pygmy perch (Nannoperca australis), relative to controls. However, drought eventually caused the complete loss of surface water from these streams and the loss of fish from both manipulated and unmanipulated sites. Thus, although the study supports the use of timber structures as a means of increasing local fish abundances, these beneficial effects were, in these streams, contingent upon permanency of flow. Because sedimentation has depleted the number of permanent refuge pools in these creeks, recovery rates of the fauna (i.e., resilience) are likely to be slow. We therefore conclude that in streams subjected to frequent disturbance, restoring refugia may be as, if not more, important as restoring what we term residential habitat.  相似文献   

9.
1. Coarse woody debris (CWD) in stream channels causes changes in flow, sedimentation and ratios of pool to riffle areas. There is a consensus among fishery managers and scientists that CWD is beneficial to stream fish communities because of its enhancement of habitat diversity, invertebrate production and cover. Our hypothesis was that CWD accumulation or introduction would not increase in‐stream habitat capacity for all species and their ontogenic stages at reach and stream scales. 2. The study used a system of gravel‐bed streams with naturally dynamic CWD accumulations and a fish community consisting of Salmo trutta, Cotttus gobio, Phoxinus phoxinus, Lampetra cf planeri, Nemacheilus barbatulus and Anguilla anguilla. Cotttus gobio and L. cf planeri are protected by an EU Directive and S. trutta is exploited for angling. Riffles, pools and CWD matrices, considered as the basic habitat/spatial units of channel structure, were sampled separately and abundance of each fish species quantified seasonally at each spatial scale. 3. Multiple‐pass electric fishing techniques were used. Capture efficiencies were calculated for species, habitat and season. Areal densities (number m?2) were compared for habitat types and season using nonparametric anova . Canonical analysis and stepwise multiple regression were used to show the most influential physical variables on fish density. Densities were also compared by unit volume (numbers m?3) for pools and CWD matrices to investigate direct three‐dimensional use for cover. Reach‐scale densities for each fish species in relation to habitat composition were made using Spearman rank correlation of habitat‐scale densities with proportionate areas of the different habitat units in the reach. 4. Habitat‐scale densities of bullheads and age 0+ trout were negatively correlated with depth and CWD areas for some seasons. Densities of lampreys, older trout, eels and minnows were positively correlated with depth in some seasons. Water depth had the most consistent influence on fish abundance at the habitat unit scale. Three‐dimensional comparisons of pools and CWD matrices indicated that only trout older than 1+ may use CWD habitats as cover. 5. Reach‐scale densities of 0+ trout and bullheads were significantly correlated with proportion of riffle area and negatively with CWD and combined CWD‐pool habitat area in the reach. Densities of older trout, large eels and lampreys were positively correlated with CWD area and combined CWD‐pool area in some seasons. Inundation of riffles caused by impoundment upstream of CWD accumulations reduced spawning habitat for trout, bullheads, brook lampreys, minnows and stone loach. A trade‐off was an increase in refugia for older trout, minnows and eels. 6. Coarse woody debris accumulation in streams is not beneficial to all species or ontogenic stages in a mixed species population and could severely limit essential habitat areas for some species. Thus, physical manipulation of channels should be implemented only after a thorough study of the habitat relationships of all species present, especially where protected species coexist with target species. The relative importance of in‐stream morphological changes depends on the spatial and temporal scale of the species life histories.  相似文献   

10.
It has been suggested that a trade‐off between cognitive capacity and developmental costs may drive brain size and morphology across fish species, but this pattern is less well explored at the intraspecific level. Physical habitat complexity has been proposed as a key selection pressure on cognitive capacity that shapes brain morphology of fishes. In this study, we compared brain morphology of brown trout, Salmo trutta, from stream, lake, and hatchery environments, which generally differ in physical complexity ranging from low habitat complexity in the hatchery to high habitat complexity in streams and intermediate complexity in lakes. We found that brain size, and the size of optic tectum and telencephalon differed across the three habitats, both being largest in lake fish with a tendency to be smaller in the stream compared to hatchery fish. Therefore, our findings do not support the hypothesis that in brown trout the volume of brain and its regions important for navigation and decision‐making increases in physically complex habitats. We suggest that the observed differences in brain size might be associated with diet quality and habitat‐specific behavioral adaptations rather than physical habitat complexity.  相似文献   

11.
1. We conducted an experimental study of predation by benthivorous fish on a natural community of stream invertebrates using a reach‐scale approach. Over a 2‐year period (experimental phase), the benthic invertebrate community of a stretch containing two species of benthivorous fish was compared with a fishless stretch. Thereafter, all fish were removed and benthic community structure was analysed again to account for natural differences between the two stretches (reference phase). 2. Benthivorous fish at the moderate densities investigated did not affect total benthic biomass or density, but did alter species composition. In addition, the fish effect differed between pool and riffle habitats, with larger effects in the pools indicating a habitat‐specific predation effect. In the reference phase, when all fish were removed from the stream, the difference between the two stretches was reduced. 3. The benthivorous fish reduced the densities of four taxa (Pisidium sp., Dugesia gonocephala, Gammarus pulex, Limoniidae), representing 29% of total biomass. It is possible that density reductions of other species were masked by prey migration despite the relatively large spatial scale. Indeed, higher drift activity in the upstream fishless stretch could have increased the density of Baetis rhodani in the fish stretch, as indicated by the results of a drift model. 4. Our results provide insights into stream food web ecology because fish predation showed effects even in a natural system where habitat complexity was high, environmental factors were highly variable and many predator and prey species interacted and because benthivorous fish were the focus, whereas the majority of previous predation experiments in streams have used drift‐feeding trout.  相似文献   

12.
The assessment of fish densities using point abundance sampling by electro‐fishing requires information about the size of the sample area. For electro‐fishing the effective fishing range depends on biological effects such as species and length of fish as well as physical effects like conductivity of water or substrate type. The present study investigates systematically the impact of conductivity and substrate type on the extension of the electrical field of a battery‐powered electro‐fishing gear (DEKA 3000, Marsberg, Germany), modified for larval and juvenile fishes. Threshold values for galvanotaxis were examined for juvenile fishes of five species in terms of current densities. Based on 71 experiments a general function relating body length to current density threshold values was developed. Optimal electrical current flow periods of 10 s were determined. For three different substrate types (gravel, sand, mud) a formula has been developed to quantify biological and physical effects on the effective fishing range. Each equation included information on the length of fish and the ambient conductivity. An increase in the effective fishing range of about 10% every 0.1 mS cm?1 was established. Reduction of the fishing range over muddy substrate was about 20–30% compared with coarse gravel or sand. This study provides a sufficient tool to calculate area‐related densities of larval and juvenile fishes in different habitat types of a large river system using point abundance sampling by electro‐fishing. Finally, calculated fish densities were evaluated by different types of fishing gear.  相似文献   

13.
Theoretical models of habitat selection often incorporate negative density dependence. Despite strong negative density‐dependent effects on habitat selection, more recent studies indicate that animals settle near members of their own (conspecific) and other species (heterospecific) when selecting habitat with social cues. Social cue use for habitat selection is particularly common among songbirds, but few studies have investigated if songbirds use social cues to assess conspecific or heterospecific density (as opposed to just presence/absence) when making settlement decisions. We conducted a playback experiment to evaluate if yellow warblers (Setophaga petechia) and willow flycatchers (Empidonax traillii), two potential competitors for breeding habitat, use social cues to assess density (conspecific for warblers and heterospecific for flycatchers) when selecting breeding locations at two spatial scales. We simulated yellow warbler density to be high or low at multiple treatment plots (3.14 ha) with song playback and then evaluated settlement decisions by comparing yellow warbler and willow flycatcher abundances across plots (broad‐scale habitat selection) and individual space use within plots (fine‐scale territory establishment). Yellow warbler density treatments did not affect habitat selection by yellow warblers at the broad scale, but caused individuals to cluster territories at high‐density treatments. Willow flycatchers were most abundant at high‐density treatment plots, but yellow warbler density treatments did not affect territory locations. The results indicate that perceived density affects the habitat selection process for both conspecifics and heterospecifics.  相似文献   

14.
Microhabitat suitability models are useful tools to enhance the reintroduction success of fish. Since 2008, a translocation and reintroduction program has been carried out in Flanders to prevent substantial loss of genetic variability in the Cottus perifretum (bullhead) population, and to meet the goals set by the Habitat Directive. To this end, habitat suitability of potential headstreams was assessed on a macrohabitat and microhabitat scale prior to the reintroduction. On a macrohabitat scale, water quality, habitat structure, food availability, and fish community were screened. Based on microhabitat models for bullhead in the summer period, microhabitat suitability was assessed in headstreams where macrohabitat characteristics showed a high potential for success. Both macro‐ and microhabitat assessment showed that reintroduction of bullheads in the Nellebeek, Bruelbeek, and Mollendaalbeek would most likely lead to self‐sustaining populations. For the Sint‐Annabeek, the microhabitat suitability model, considering depth and stream velocity, estimates that 7.5–9.5% of the headstream is suitable for bullhead. However, when substratum is taken into account, the microhabitat suitability index shows that only 4.3–5.8% of the brook is suitable. The current habitat quality and quantity in the Sint‐Annabeek is estimated to support a mean total population of 812 bullheads. However, the microhabitat suitability can be substantially improved by the artificial deposition of medium‐sized gravel (5–50 mm) and large gravel (50–100 mm). By doing so, the mean estimated population size could increase up to 1,330 individuals. Our results show that habitat improvement is necessary prior to the reintroduction of bullheads in the Sint‐Annabeek.  相似文献   

15.
Knowledge of the effects of environment and genotype on behavior during early ontogenetic stages of many fish species including lake sturgeon (Acipenser fulvescens) is generally lacking. Understanding these effects is particularly important at a time when human activities are fundamentally altering habitats and seasonal and diel physical and biotic stream features. Artificial stream channels were used in a controlled experiment to quantify lake sturgeon yolk‐sac larvae dispersal distance and stream substrate preference from different females (N = 2) whose eggs were incubated at different temperatures (10 and 18°C) that simulated stream conditions during early and late spawning and incubation periods in the Black River, Michigan. Data revealed that yolk‐sac larvae exhibited considerable variability in dispersal distance as a function of family (genotype), temperature experienced during previous (embryonic) ontogenetic stages, and environmental ‘grain’. Yolk‐sac larvae dispersal distance varied as a function of the juxtaposition of substrate to location of egg hatch. Lake sturgeon yolk‐sac larvae dispersed from mesh screens attached to bricks and settled exclusively in gravel substrate. Dispersal distance also varied as a function of family and egg incubation temperatures, reflecting differences in offspring body size and levels of endogenous yolk reserves (yolk sac area) at hatch. Expression of plasticity in dispersal behavior may be particularly important to individual survival and population levels of recruitment contingent upon the location, size, and degree of fragmentation of suitable (gravel) habitats between adult spawning and yolk‐sac larvae rearing areas.  相似文献   

16.
1. Rivers in boreal forested areas were often dredged to facilitate the transport of timber resulting in channels with simplified bed structure and flow fields and reduced habitat suitability for stream organisms, especially lotic fishes. Currently, many streams are being restored to improve their physical habitat, by replacing boulders and gravel and removing constraining embankments. The most compelling justification behind stream restoration of former floatways has been the enhancement of native fish populations, specifically salmonids. 2. We examined the success of a stream management programme aimed at re‐building diminished brown trout (Salmo trutta) populations by monitoring densities of young‐of‐year and older trout in 18 managed and three reference streams during 2000–2005. Rehabilitation included in‐stream restoration combined with a 5‐year post‐restoration period of stocking young brown trout. Our space‐for‐time substitution design comprised four pre‐management, four under‐management, 10 post‐management and three reference streams. 3. Densities of young‐of‐year brown trout, indicating population establishment, were significantly higher in post‐ compared with pre‐management streams. However, density of young‐of‐year brown trout in post‐management streams was significantly lower compared with near‐pristine reference streams. Furthermore, success of managed brown trout population re‐building varied, indicating stream‐specific responses to management measures. Density of burbot (Lota lota), a native generalist predator, was associated with low recruitment of brown trout. 4. Stream‐specific responses imply that rehabilitation of brown trout populations cannot be precisely predicted thereby limiting application. Our findings support the importance of adaptive stream restoration and management, with focus on identifying factor(s) limiting the establishment of target fish populations.  相似文献   

17.
Abstract This study investigated the structure and properties of a tropical stream food web in a small spatial scale, characterizing its planktonic, epiphytic and benthic compartments. The study was carried out in the Potreirinho Creek, a second‐order stream located in the south‐east of Brazil. Some attributes of the three subwebs and of the conglomerate food web, composed by the trophic links of the three compartments plus the fish species, were determined. Among compartments, the food webs showed considerable variation in structure. The epiphytic food web was consistently more complex than the planktonic and benthic webs. The values of number of species, number of links and maximum food chain length were significantly higher in the epiphytic compartment than in the other two. Otherwise, the connectance was significantly lower in epiphyton. The significant differences of most food web parameters were determined by the increase in the number of trophic species, represented mainly by basal and intermediate species. High species richness, detritus‐based system and high degree of omnivory characterized the stream food web studied. The aquatic macrophytes probably provide a substratum more stable and structurally complex than the sediment. We suggest that the greater species richness and trophic complexity in the epiphytic subweb might be due to the higher degree of habitat complexity supported by macrophyte substrate. Despite differences observed in the structure of the three subwebs, they are highly connected by trophic interactions, mainly by fishes. The high degree of fish omnivory associated with their movements at different spatial scales suggests that these animals have a significant role in the food web dynamic of Potreirinho Creek. This interface between macrophytes and the interconnections resultant from fish foraging, diluted the compartmentalization of the Potreirinho food web.  相似文献   

18.
Few studies have been carried out on stream ecology in southern Africa although many species are endangered. This study investigated the stream fish assemblage and their habitat associations over a period of 3 months (October 2004 to January 2005), in view of the proposal to build a dam across the Nyagui River. Twenty-four fish species were collected and were separated into groups based on preferred microhabitats. The first group, dominated by Barbus paludinosus , comprised species collected from the upstream stations with slow flow, shallow depth (pools) and fine substrate type. Species associated with riffles, which included Chiloglanis neumanni , Labeobarbus marequensis and Opsaridium zambezense , comprised the second group on the downstream. The last group comprised species preferring pools with rock substrate and slow flow such as Pharyngochromis acuticeps and Pseudocranilabrus philander . The species were consistently associated with their habitat types throughout the sampling period. This relationship may be explained by the fish's morphological adaptations. Species richness increased from nine in the upstream section to twenty in the downstream section and this was related to increasing habitat complexity downstream. The construction of the Kunzvi Dam across the Nyagui River is likely to lead to loss of rheophilic species while cichlids and introduced species may increase.  相似文献   

19.
Agricultural land use is a primary driver of environmental impacts on streams. However, the causal processes that shape these impacts operate through multiple pathways and at several spatial scales. This complexity undermines the development of more effective management approaches, and illustrates the need for more in‐depth studies to assess the mechanisms that determine changes in stream biodiversity. Here we present results of the most comprehensive multi‐scale assessment of the biological condition of streams in the Amazon to date, examining functional responses of fish assemblages to land use. We sampled fish assemblages from two large human‐modified regions, and characterized stream conditions by physical habitat attributes and key landscape‐change variables, including density of road crossings (i.e. riverscape fragmentation), deforestation, and agricultural intensification. Fish species were functionally characterized using ecomorphological traits describing feeding, locomotion, and habitat preferences, and these traits were used to derive indices that quantitatively describe the functional structure of the assemblages. Using structural equation modeling, we disentangled multiple drivers operating at different spatial scales, identifying causal pathways that significantly affect stream condition and the structure of the fish assemblages. Deforestation at catchment and riparian network scales altered the channel morphology and the stream bottom structure, changing the functional identity of assemblages. Local deforestation reduced the functional evenness of assemblages (i.e. increased dominance of specific trait combinations) mediated by expansion of aquatic vegetation cover. Riverscape fragmentation reduced functional richness, evenness and divergence, suggesting a trend toward functional homogenization and a reduced range of ecological niches within assemblages following the loss of regional connectivity. These results underscore the often‐unrecognized importance of different land use changes, each of which can have marked effects on stream biodiversity. We draw on the relationships observed herein to suggest priorities for the improved management of stream systems in the multiple‐use landscapes that predominate in human‐modified tropical forests.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号