首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The field of laboratory animal medicine is experiencing a serious shortage of appropriately trained veterinarians for both clinically related and research-oriented positions within academia, industry, and government. Recent outreach efforts sponsored by professional organizations have stimulated increased interest in the field. It is an opportune time to critically review and evaluate postgraduate training opportunities in the United States and Canada, including formal training programs, informal training, publicly accessible training resources and educational opportunities, and newly emerging training resources such as Internet-based learning aids. Challenges related to each of these training opportunities exist and include increasing enrollment in formal programs, securing adequate funding support, ensuring appropriate content between formal programs that may have diverse objectives, and accommodating the training needs of veterinarians who enter the field by the experience route. Current training opportunities and resources that exist for veterinarians who enter and are established within the field of laboratory animal science are examined. Strategies for improving formal laboratory animal medicine training programs and for developing alternative programs more suited to practicing clinical veterinarians are discussed. In addition, the resources for high-quality continuing education of experienced laboratory animal veterinarians are reviewed.  相似文献   

2.
3.
The United States is confronting important challenges at both the early and late stages of science education. At the level of K–12 education, a recent National Research Council report (Successful K–12 STEM Education) proposed a bold restructuring of how science is taught, moving away from memorizing facts and emphasizing hands-on, inquiry-based learning and a deeper understanding of the process of science. At higher levels of training, limited funding for science is leading PhDs to seek training and careers in areas other than research. Might science PhDs play a bigger role in the future of K–12 education, particularly at the high school level? We explore this question by discussing the roles that PhDs can play in high school education and the current and rather extensive barriers to PhDs entering the teaching profession and finally suggest ways to ease the entrance of qualified PhDs into high school education.In many K–12 classrooms, science is presented as a series of textbook facts; students are not exposed to scientific methods of inquiry and lose interest in science. At the very opposite end of the science training pipeline, life science PhDs and postdocs in the United States are experiencing difficulties in finding university jobs, a situation that will likely persist in the coming decade if research funding fails to grow; we cannot expect all PhD graduates to become principal investigators (PIs) at academic institutions.Might these two problems add up to a solution (or at least a partial solution)? Is there a place for graduates of PhD training programs in teaching K–12 science, particularly at the high school (HS) level (the focus of this article)? We argue that the answer is “yes” and that more PhDs, even if their numbers are small compared with the entire teaching pool, could have a catalytic effect on reinvigorating precollege science education. This topic is not new; the National Research Council (NRC) issued two thoughtful reports on attracting science and math PhDs to secondary school education more than a decade ago (Committee on Attracting Science and Mathematics Ph.D.s to Secondary School Teaching, National Research Council, 2000 ; Committee on Attracting Science and Mathematics PhDs to K-12 Education: From Analysis to Implementation, Division of Policy and Global Affairs, National Research Council, 2002 ). Their recommendations were not implemented, however, and the reports have largely been forgotten. Little has changed since then; the roadblocks, both in perception and logistics, that discouraged a PhD from becoming a HS teacher in the year 2000 still exist. Since the NRC reports were released, the topic of a HS teaching career option for a PhD has rarely been discussed or debated in our scientific community. We feel that it is time to reopen this discussion. The focus of this article is on PhDs entering the high school system, but much of this discussion also pertains to graduates of science master degree programs and to individuals with scientific training becoming involved in all levels of K–12 education. Our goal is to make students, postdocs, and senior scientists aware of the value of high school teaching for certain individuals as well as for our nation''s educational system. We also consider how changes at the local level (including the perception of K–12 teaching within research universities), as well as at the policy level of teacher accreditation, might facilitate this career path.  相似文献   

4.
We live in an increasingly data-driven world, where high-throughput sequencing and mass spectrometry platforms are transforming biology into an information science. This has shifted major challenges in biological research from data generation and processing to interpretation and knowledge translation. However, postsecondary training in bioinformatics, or more generally data science for life scientists, lags behind current demand. In particular, development of accessible, undergraduate data science curricula has the potential to improve research and learning outcomes as well as better prepare students in the life sciences to thrive in public and private sector careers. Here, we describe the Experiential Data science for Undergraduate Cross-Disciplinary Education (EDUCE) initiative, which aims to progressively build data science competency across several years of integrated practice. Through EDUCE, students complete data science modules integrated into required and elective courses augmented with coordinated cocurricular activities. The EDUCE initiative draws on a community of practice consisting of teaching assistants (TAs), postdocs, instructors, and research faculty from multiple disciplines to overcome several reported barriers to data science for life scientists, including instructor capacity, student prior knowledge, and relevance to discipline-specific problems. Preliminary survey results indicate that even a single module improves student self-reported interest and/or experience in bioinformatics and computer science. Thus, EDUCE provides a flexible and extensible active learning framework for integration of data science curriculum into undergraduate courses and programs across the life sciences.  相似文献   

5.
With the rapid pace of advancements in biological research brought about by the application of computer science and information technology, we believe the time is right for introducing genomics and bioinformatics tools and concepts to secondary school students. Our approach has been to offer a full-day field trip in our research facility where secondary school students carry out experiments at the laboratory bench and on a laptop computer. This experience offers benefits for students, teachers, and field trip instructors. In delivering a wide variety of science outreach and education programs, we have learned that a number of factors contribute to designing a successful experience for secondary school students. First, it is important to engage students with authentic and fun activities that are linked to real-world applications and/or research questions. Second, connecting with a local high school teacher to pilot programs and linking to curricula taught in secondary schools will enrich the field trip experience. Whether or not programs are linked directly to local teachers, it is important to be flexible and build in mechanisms for collecting feedback in field trip programs. Finally, graduate students can be very powerful mentors for students and should be encouraged to share their enthusiasm for science and to talk about career paths. Our experiences suggest a real need for effective science outreach programs at the secondary school level and that genomics and bioinformatics are ideal areas to explore.  相似文献   

6.
Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students'' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.  相似文献   

7.
Large lecture classes and standardized laboratory exercises are characteristic of introductory biology courses. Previous research has found that these courses do not adequately convey the process of scientific research and the excitement of discovery. Here we propose a model that provides beginning biology students with an inquiry-based, active learning laboratory experience. The Dynamic Genome course replicates a modern research laboratory focused on eukaryotic transposable elements where beginning undergraduates learn key genetics concepts, experimental design, and molecular biological skills. Here we report on two key features of the course, a didactic module and the capstone original research project. The module is a modified version of a published experiment where students experience how virtual transposable elements from rice (Oryza sativa) are assayed for function in transgenic Arabidopsis thaliana. As part of the module, students analyze the phenotypes and genotypes of transgenic plants to determine the requirements for transposition. After mastering the skills and concepts, students participate in an authentic research project where they use computational analysis and PCR to detect transposable element insertion site polymorphism in a panel of diverse maize strains. As a consequence of their engagement in this course, students report large gains in their ability to understand the nature of research and demonstrate that they can apply that knowledge to independent research projects.  相似文献   

8.
ABSTRACT

In this issue, Cantor and colleagues synthesize a broad representation of the literature on the science of learning, and how learning changes over the course of development. Their perspective highlights three important factors about the emerging field of science of learning and development: (1) that it draws insights from increasingly diverse fields of research inquiry, from neuroscience and social science to computer science and adversity science; (2) that it provides a means to understand principles that generalize across learners, and yet also allow individual differences in learning to emerge and inform; and (3) that it recognizes that learning occurs in context, and is thus a shared responsibility between the learner, the instructor, and the environment. Here I discuss how this complex systems dynamical perspective can be integrated with the emerging framework of ‘learning engineering’ to provide a blueprint for significant innovations in education.  相似文献   

9.
Bioinformatics.ca has been hosting continuing education programs in introductory and advanced bioinformatics topics in Canada since 1999 and has trained more than 2,000 participants to date. These workshops have been adapted over the years to keep pace with advances in both science and technology as well as the changing landscape in available learning modalities and the bioinformatics training needs of our audience. Post-workshop surveys have been a mandatory component of each workshop and are used to ensure appropriate adjustments are made to workshops to maximize learning. However, neither bioinformatics.ca nor others offering similar training programs have explored the long-term impact of bioinformatics continuing education training. Bioinformatics.ca recently initiated a look back on the impact its workshops have had on the career trajectories, research outcomes, publications, and collaborations of its participants. Using an anonymous online survey, bioinformatics.ca analyzed responses from those surveyed and discovered its workshops have had a positive impact on collaborations, research, publications, and career progression.B. F. Francis Ouellette is an Education Editor for PLOS Computational Biology  相似文献   

10.
Representatives of the genus Streptomyces from terrestrial sources have been the focus of intensive research for the last four decades because of their prolific production of chemically diverse and biologically important compounds. However, metabolite research from this ecological niche had declined significantly in the past years because of the rediscovery of the same bioactive compounds and redundancy of the sample strains. More recently, a new picture has begun to emerge in which marine-derived Streptomyces bacteria have become the latest hot spot as new source for unique and biologically active compounds. Here, we investigated the marine sediments collected in the temperate cold waters from British Columbia, Canada as a valuable source for new groups of marine-derived Streptomyces with antimicrobial activities. We performed culture dependent isolation from 49 marine sediments samples and obtained 186 Streptomyces isolates, 47 of which exhibited antimicrobial activities. Phylogenetic analyses of the active isolates resulted in the identification of four different clusters of bioactive Streptomyces including a cluster with isolates that appear to represent novel species. Moreover, we explored whether these marine-derived Streptomyces produce new secondary metabolites with antimicrobial properties. Chemical analyses revealed structurally diverse secondary metabolites, including four new antibacterial novobiocin analogues. We conducted structure-activity relationships (SAR) studies of these novobiocin analogues against methicillin-resistant Staphylococcus aureus (MRSA). In this study, we revealed the importance of carbamoyl and OMe moieties at positions 3” and 4” of novobiose as well as the hydrogen substituent at position 5 of hydroxybenzoate ring for the anti-MRSA activity. Changes in the substituents at these positions dramatically impede or completely eliminate the inhibitory activity of novobiocins against MRSA.  相似文献   

11.
12.
All physicians, at some point in their career, are responsible for the education of their peers and junior colleagues. Although medical students are expected to develop clinical and research skills in preparation for residency, it is becoming clear that a student should also be expected to develop abilities as a teacher. A handful of institutions have student-as-teacher programs to train medical students in education, but most students graduate from medical school without formal training in this area. When such a program does not exist, medical students can gain experience in education through participation in peer teaching, course design, educational committees, and medical education scholarship. In doing so, they attain important skills in the development, implementation, and evaluation of educational programs. These skills will serve them in their capacity as medical educators as they advance in their careers and gain increasing teaching responsibility as residents, fellows, and attending physicians.  相似文献   

13.
14.
Pinson DM 《Lab animal》2012,41(7):198-203
The laws and policies governing the care and use of animals in research in the US require institutions to establish training programs to assure that personnel are qualified for their roles in animal care and use programs. Few programs define specific training requirements for the Institutional Official (IO), one of the most important roles in an animal care program. In some cases, IOs may have little or no experience in biomedical science. In this article, the author provides an overview of the IO's role in an animal care and use program as defined by US government laws and policies for use in training IOs and chief executive officers. The author outlines the key responsibilities of the IO in an animal care program, the implications of noncompliance with federal requirements and some of the pitfalls in program design.  相似文献   

15.
Preparing students to explore, understand, and resolve societal challenges such as global climate change is an important task for evolutionary and ecological biologists that will require novel and innovative pedagogical approaches. Recent calls to reform undergraduate science education emphasize the importance of engaging students in inquiry-driven, active, and authentic learning experiences. We believe that the vast digital resources (i.e., “big data”) associated with natural history collections provide invaluable but underutilized opportunities to create such experiences for undergraduates in biology. Here, we describe an online, open-access educational module that we have developed that harnesses the power of collections-based information to introduce students to multiple conceptual and analytical elements of climate change, evolutionary, and ecological biology research. The module builds upon natural history specimens and data collected over the span of nearly a century in Yosemite National Park, California, to guide students through a series of exercises aimed at testing hypotheses regarding observed differences in response to climate change by two closely related and partially co-occurring species of chipmunks. The content of the module can readily be modified to meet the pedagogical goals and instructional levels of different courses while the analytical strategies outlined can be adapted to address a wide array of questions in evolutionary and ecological biology. In sum, we believe that specimen-based natural history data represent a powerful platform for reforming undergraduate instruction in biology. Because these efforts will result in citizens who are better prepared to understand complex biological relationships, the benefits of this approach to undergraduate education will have widespread benefits to society.  相似文献   

16.
Chemical biology graduate programs that are jointly organized by chemistry and life science departments can offer a stimulating 'bicultural' training environment for students from diverse backgrounds. However, communication, flexibility and responsiveness are crucial for effectively structuring such programs.  相似文献   

17.
Chemical biology graduate programs that are jointly organized by chemistry and life science departments can offer a stimulating 'bicultural' training environment for students from diverse backgrounds. However, communication, flexibility and responsiveness are crucial for effectively structuring such programs.  相似文献   

18.
As medicine moves into the 21st century, life saving therapies will move from inception into medical products faster if there is a better synergy between science and business. Medicine appears to have 50-year innovative cycles of education and scientific discoveries. In the 1880’s, the chemical industry in Germany was faced with the dilemma of modernization to exploit the new scientific discoveries. The solution was the spawning of novel technical colleges for training in these new chemical industries. The impact of those new employees and their groundbreaking compounds had a profound influence on medicine and medical education in Germany between 1880 and 1930. Germany dominated international science during this period and was a training center for scientists worldwide. This model of synergy between education and business was envied and admired in Europe, Asia and America. British science soon after evolved to dominate the field of science during the prewar and post World War (1930’s–1970’s) because the German scientists fled Hitler’s government. These expatriated scientists had a profound influence on the teaching and training of British scientists, which lead to advances in medicine such as antibiotics. After the Second World War, the US government wisely funded the development of the medical infrastructure that we see today. British and German scientists in medicine moved to America because of this bountiful funding for their research. These expatriated scientists helped drive these medical advances into commercialized products by the 1980’s. America has been the center of medical education and advances of biotechnology but will it continue? International scientists trained in America have started to return to Europe and Asia. These American-trained scientists and their governments are very aware of the commercial potential of biotechnology. Those governments are now more prepared to play an active role this new science. Germany, Ireland, Britain, Singapore, Taiwan and Israel are such examples of this government support for biotechnology in the 21st century. Will the US continue to maintain its domination of biotechnology in this century? Will the US education system adjust to the new dynamic of synergistic relationships between the education system, industry and government? This article will try to address these questions but also will help the reader understand who will emerge by 2015 as the leader in science and education.  相似文献   

19.
AimTo assess the educational needs, role and perceptions in palliative care issues of radiation oncologists (ROs) and trainees.Background1/3 of radiotherapy patients are treated with palliative intent. Conversely, education and role that ROs have in the palliative care process are not well established, neither in terms of how they perceive their competence nor whether it is important to improve training, research and attention in palliative care issues at radiotherapy congresses.Material and MethodsLiterature systematic review in National Library of Medicine and Cochrane databases with 11 relevant issues to be identified. One doctor made first selection of articles, a second one confirmed their eligibility.Results722 articles reviewed, 19 selected. 100% recognize the importance of palliative care in radiotherapy, 89.4% the need of training in palliative care for ROs, 68.4% the necessity of improving the resident programs, 63.1% the importance of skilled ROs in palliative care, 63.1% the need of better communication skills and pain management (47.3%), 52.6%, the perception of inadequate training in palliative care, 36.8% the lack of research and palliative care topics in radiotherapy meetings, 21% the absence of adequate guidelines regarding palliative care approaches, 42.1% the importance of the ROs in palliative care teams and 26.3% the lack of their involvement.ConclusionPalliative care has an important role in radiotherapy but it seems ROs still need more training. It is necessary to improve training programs, increment palliative care research in radiotherapy, giving more attention to palliative care themes at radiotherapy congresses. This could lead to a better integration of radiotherapists in multidisciplinary palliative care teams in the future.  相似文献   

20.
Abstract

International efforts aimed at control of pollution of the Mediterranean Sea are unique in the extent to which politically diverse coastal states and a wide variety of international agencies are implementing cooperative programs of scientific research, education and training, planning, and treaty drafting. Continuing environmental cooperation in the Mediterranean reflects the political utility of pollution as a regional issue. Governments, the Mediterranean scientific community, and international organizations derive common benefits from maintaining the momentum of the United Nations Environment Programme‐sponsored activities, despite declining global interest in environmental concerns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号