首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Organic phosphorus sources make up a large fraction of the total P in some soils. Vesicular–arbuscular mycorrhizal fungi provide a large surface area for the absorption of inorganic P. The question of whether or not they have direct access to organic P by producing extracellular phosphatases has hitherto been controversial because experiments had not been performed in the absence of other soil microorganisms. We used a split-dish in vitro carrot mycorrhiza system free from contaminating microorganisms. The extraradical hyphae of Glomus intraradices hydrolysed both 5-bromo-4-chloro-3-indolyl phosphate and phenolphthalein diphosphate. Moreover, they transferred significantly more P to roots when they had access to inositol hexaphosphoric acid (phytate) than when they did not. Thus we show unequivocally that extraradical hyphae of G. intraradices can hydrolyse organic P, and, further, that the resultant inorganic P can be taken up and transported to host roots.  相似文献   

4.
5.
To investigate nitrogen assimilation in Lolium perenne L. colonized by the arbuscular mycorrhizal (AM) fungus Glomus fasciculatum (Thax. sensu Gerd.), nitrate uptake, key enzyme activities, and 15N incorporation into free amino acids were measured. After a 4-h labelling period with [15N]nitrate, 15N content was higher in roots and shoots of AM-plants than in those of control plants. Glutamine synthetase (GS) and nitrate reductase (NR) activities were increased in shoots of AM-plants, but not in roots. More label was incorporated into amino acids in shoots of AM plants. Glutamine, glutamate, alanine and γ-aminobutyric acid were the major sinks for 15N in roots and shoots of control and AM plants. Interactions between mycorrhizal colonization, phosphate and nitrate nutrition and NR activity were investigated in plants which received different amounts of phosphate or nitrate. In shoots of control plants, NR activity was not stimulated by high levels of phosphate nutrition but was stimulated by high levels of nitrate. At 4 m M nitrate in the nutrient solution, NR activity was similar in control and AM plants. We concluded that mycorrhizal effects on nitrate assimilation are not mediated via improved phosphate nutrition, but could be due to improved nitrogen uptake and translocation.  相似文献   

6.
To collect extraradical hyphae of arbuscular mycorrhizal (AM) fungi for RNA isolation, a PVDF membrane was laid on the hyphal compartment of a two-compartment culture system of transformed carrot hairy roots and Glomus intraradices. Extraradical hyphae free from host tissue were easily collected, and their RNA was rapidly extracted with a modified acid guanidinium thiocyanate-phenol-chloroform method. A 3'-RACE (rapid amplification of cDNA ends) of a known gene indicated that this protocol enabled the isolation of mRNA molecules as small as 2.3 kb. The cDNA libraries of an AM fungus from the aseptic extraradical hyphae in a symbiotic state were constructed for the first time. Three-fourth of 150 ESTs (expressed sequence tags) indicated low or no similarities to known sequences from other organisms.  相似文献   

7.
The direct impact of fenpropimorph on the sterol biosynthesis pathway of Glomus intraradices when extraradical mycelia alone are in contact with the fungicide was investigated using monoxenic cultures. Bi-compartmental Petri plates allowed culture of mycorrhizal chicory roots in a compartment without fenpropimorph and exposure of extraradical hyphae to the presence of increasing concentrations of fenpropimorph (0, 0.02, 0.2, 2, 20 mg l−1). In the fungal compartment, sporulation, hyphal growth, and fungal biomass were already reduced at the lowest fungicide concentration. A decrease in total sterols, in addition to an increase in the amount of squalene and no accumulation of abnormal sterols, suggests that the sterol pathway is severely slowed down or that squalene epoxidase was inhibited by fenpropimorph in G. intraradices. In the root compartment, neither extraradical and intraradical development of the arbuscular mycorrhizal (AM) fungus nor root growth was affected when they were not in direct contact with the fungicide; only hyphal length was significantly affected at 2 mg l−1 of fenpropimorph. Our results clearly demonstrate a direct impact of fenpropimorph on the AM fungus by a perturbation of its sterol metabolism.  相似文献   

8.
Yao  Qing  Li  Xiaolin  Feng  Gu  Christie  Peter 《Plant and Soil》2001,230(2):279-285
Red clover (Trifolium pratense L.) and Glomus versiforme (Karsten) Berch growing in rhizoboxes were employed in two glasshouse experiments to study the mobilization of sparingly soluble phosphates by arbuscular mycorrhizal fungal (AMF) mycelium. In one experiment, four inorganic sources of phosphate, CaHPO4.2H2O (Ca2-P), Ca8H2(PO4)6.5H2O (Ca8-P), Ca10(PO4)6.F2 (Ca10-P) and AlPO4.nH2O (Al-P), were chemically synthesized, labelled with 32P in an atomic pile and applied to the hyphal compartments of the rhizoboxes. Shoot yield, 32P and total P uptake were measured in clover growing in the root compartments. A similar experiment was conducted simultaneously using the same phosphate sources unlabelled and clover mycorrhizal infection and soil pH were determined. Although AMF inoculation increased the P uptake and biomass of clover shoots, the contribution of AMF to shoot P uptake and biomass varied with phosphate source, and was greatest with Ca2-P and least with Ca10-P. 32P measurements indicated that external hyphae could mobilize Ca2-P, Ca8-P and Al-P, but not Ca10-P. This indicates that AMF not only mobilize the same types of phosphates that plants mobilize under stress conditions of low P, but give increased contact with phosphates in the soil compared with non-mycorrhizal root systems.  相似文献   

9.
10.
The effects of soil P amendments and time of application on the formation of external mycelium by different arbuscular mycorrhizal (AM) fungi were studied. In the first experiment the external mycelium produced in the soil by the AM fungus Glomus etunicatum Beck. and Gerd., during the early stages of root colonization (7 and 14 days after inoculation), was quantified by the soil-agar film technique. A Brazilian Oxisol was used with three different phosphate levels, varying from deficient to supra-optimal for the plant. Significant differences were observed in the phosphate and inoculation treatments for plant dry weight, P content in the tissue, root length and root colonization, at fourteen days after planting. At 7 days, mycelium growth, root colonization and their relationship were reduced at supra-optimal P concentrations. Applications of P one week after planting reduced mycelium growth and root colonization more than when applied to the soil before planting. In a second experiment the arbuscular mycorrhizal (AM) fungi, Scutellospora heterogama (Nicol. and Gerd.) Walker and Sanders and E3 were tested and compared with Glomus etunicatum. For the species studied, the length of external hyphae per unit of colonized root length was affected by small P additions but no further significant differences were observed at high P levels. The three AM endophytes showed marked differences in their response to P in the soil: Scutellospora heterogama, although producing external mycelium more profusely than the Glomus spp., showed a higher sensitivity to soil P supply.  相似文献   

11.
Tobacco (Nicotiana tabacum L.) plants were grown with and without the arbuscular mycorrhizal fungus, Glomus intraradices Schenk & Smith. High-performance liquid chromatographic analyses of methanolic extracts from mycorrhizal and non-mycorrhizal tobacco roots revealed marked fungus-induced changes in the patterns of UV-detectable products. The UV spectra of these products, obtained from an HPLC photodiode array detector, indicated the presence of several blumenol derivatives. The most predominant compound among these derivatives was spectroscopically identified as 13-hydroxyblumenol C 9-O-gentiobioside (“nicoblumin”), i.e. the 9-O-(6′-O-β-glucopyranosyl)-β-glucopyranoside of 13-hydroxy-6-(3-hydroxybutyl)-1,1,5-trimethyl-4-cyclohexen-3-one, a new natural product. This is the first report on the identification of blumenol derivatives in mycorrhizal roots of a non-gramineous plant. Received: 28 August 1998 / Accepted: 26 October 1998  相似文献   

12.
 Fungal enzyme activities were quantified in an interaction study between the fungus Glomus intraradices and the pea pathogen Aphanomyces euteiches. Fungal and host enzymes were separated by polyacrylamide gel electrophoresis and the activity of A. euteiches–specific glucose-6-phosphate dehydrogenase (Gd), phosphoglucomutase and peptidase (PEP) enzymes were quantified by densitometry. The activity of A. euteiches–specific enzymes increased until 14 days after inoculation with A. euteiches, and then decreased. The plants preinoculated with G. intraradices showed no symptoms of severe root rot even though the pathogen was present and active in these plants. Thus, plants preinoculated with G. intraradices were more tolerant of infection with A. euteiches than non-mycorrhizal plants. This effect was evident even though the A. euteiches infection levels of mycorrhizal and non-mycorrhizal plants were the same. A. euteiches enzyme activities in the mycorrhizal plants were different to those in non-mycorrhizal plants. The peaks of PEP and Gd enzyme activity of A. euteiches were lower and the development of A. euteiches PEP activity was later in the mycorrhizal plants than in the non-mycorrhizal plants. Accepted: 14 November 1996  相似文献   

13.
Two generations of two aphid species (Myzus ascalonicus and M. persicae) were reared on Plantago lanceolata plants, with and without root colonization by the arbuscular mycorrhizal fungus, Glomus intraradices. Life history traits of the aphids measured were nymphal development time, teneral adult weight, growth rate, total fecundity, adult longevity and duration of post-reproductive life. For both aphids in both generations, mycorrhizal colonization increased aphid weight and fecundity, while other traits were unaffected. The increases were consistent between generations. In a second experiment, M. persicae was reared on plants with and without the fungus, under varying N and P regimes. The results of N addition were inconclusive because there was high aphid mortality. However, under P supplementation, positive effects of the mycorrhiza on aphid growth were seen at low and medium P levels, while at high P levels these effects disappeared. The positive effects of mycorrhizal colonization reported here are contrary to the majority of previous studies with chewing insects, which have reported negative effects. A number of possible mechanisms for this apparent discrepancy are discussed. Received: 1 February 1999 / Accepted: 22 March 1999  相似文献   

14.
15.
 A plant growth system with root-free hyphal compartments was used to examine the interactions between a mycophagous Collembola (Folsomia candida Willem), dry yeast and an arbuscular mycorrhizal (AM) fungus [Glomus caledonium (Nicol. & Gerd.) Trappe and Gerdemann] in terms of Collembola reproduction, AM-hyphal length and AM-hyphal P transport. Collembola reproduction was unaffected by AM mycelium, but a supplement of dry yeast increased the Collembola population size. The addition of dry yeast increased AM-hyphal P transport by increasing hyphal length. Collembola without yeast affected neither AM-hyphal growth nor AM-hyphal P transport, whereas Collembola with yeast decreased AM-hyphal P transport by 75% after 8 weeks. The hyphal density of G. caledonium remained unaffected by Collembola except after 4 weeks in combination with yeast, when a 33% reduction was observed. The results of this experiment show that the interaction between F. candida and the external mycelium of G. caledonium is limited under the conditions imposed. Accepted: 27 February 1996  相似文献   

16.
Drew  E.A.  Murray  R.S.  Smith  S.E.  Jakobsen  I. 《Plant and Soil》2003,251(1):105-114
Research on nutrient acquisition by symbiotic arbuscular mycorrhizal (AM) fungi has mainly focused on the root–fungus interface and less attention has been given to the growth and functioning of external hyphae in the bulk soil. The growth and function of external hyphae may be affected by unfavourable soil environments, such as compacted soils in which pores may be narrow. The effects of pore size on the growth of two AM fungi (Glomus intraradices and G. mosseae) and their ability to transport 33P from the bulk soil to the host were investigated. Trifolium subterraneum L. plants were grown individually in `single arm cross-pots' with and without AM fungi. The side arm was separated from the main compartment by nylon mesh to prevent root penetration. It contained three zones: 5 mm of soil:sand mix (HC1); 25 mm of media treatment (HC2); and 20 mm of 33P-labelled soil (HC3). There were four media treatments; soil and three types of quartz sand with most common continuous pore diameters of 100, 38 and 26 m. AM plants had similar growth and total P uptake in all treatments. However, plants grown with G. intraradices contained almost three times more 33P than those grown with G. mosseae, indicating G. intraradices obtained a greater proportion of P at a distance from the host roots. Differences in P acquisition were not correlated with production of external hyphae in the four media zones and changes in sand pore size did not affect the ability of the fungi studied to acquire P at a distance from the host roots. Production of external hyphae in HC2 was influenced by fungal species and media treatment. Both fungi produced maximum amounts of external hyphae in the soil medium. Sand pore size affected growth of G. intraradices (but not G. mosseae) and hyphal diameter distributions of both fungi. The results suggest that not only are G. mosseae and G. intraradices functionally complementary in terms of spatial phosphorus acquisition, they are also capable of altering their morphology in response to the soil environment.  相似文献   

17.
Arbuscular mycorrhizal (AM) root respiration can impose a respiratory sink on host reserves under low P conditions, but it is not known how AM roots respond to short-term supply of sufficient P. Therefore, the effect of P stress alleviation on the respiration of AM roots was investigated in 5-week-old tomato plants. Plants were inoculated with Glomus mosseae in sand culture and grown hydroponically in a low P (2 μM) nutrient medium for 3 weeks. P stress was alleviated by the supply of 2 mM P for 72 h. With P stress alleviation, the improved root P status coincided with a decline in AM fungal activity and a reduction in root CO2 and O2 fluxes of the AM plants. During P stress alleviation, the AM roots had lower concentrations of organic acids, derived from root-zone CO2 assimilation, in their root exudates. These results show that short-term alleviation of low P conditions in AM roots rapidly affects AM fungal symbiont activity, AM root respiration, and root-zone CO2-derived organic acid metabolism.  相似文献   

18.
Arbuscular mycorrhizal fungi are able to alleviate the stress for plants caused by heavy metal contamination of soil. To analyze the molecular response of arbuscular mycorrhizal fungi to these pollutants, a subtractive cDNA library was constructed using RNA from Glomus intraradices extraradical hyphae of a root organ culture treated with a mixture of Cd, Zn, and Cu. Screening by reverse Northern blot analysis indicated that, among 308 clones, 17% correspond to genes up-regulated by heavy metals. Sequence analysis of part of the clones resulted, amongst others, in the identification of six genes putatively coding for glutathione S-transferases belonging to two different classes of these enzymes. Expression analyses indicated that the genes are differentially expressed during fungal development and that their RNA accumulation dramatically increases in extraradical hyphae grown in a heavy metal-containing solution.  相似文献   

19.
The minimum chromosome number of Glomus intraradices was assessed through cloning and sequencing of the highly divergent telomere-associated sequences (TAS) and by pulsed field gel electrophoresis (PFGE). The telomere of G. intraradices, as in other filamentous fungi, consists of TTAGGG repeats, this was confirmed using Bal31 nuclease time course reactions. Telomere length was estimated to be roughly 0.9 kb by Southern blots on genomic DNA and a telomere probe. We have identified six classes of cloned chromosomal termini based on the TAS. An unusually high genetic variation was observed within two of the six TAS classes. To further assess the total number of chromosome termini, we used telomere fingerprinting. Surprisingly, all hybridization patterns showed smears, which demonstrate that TAS are remarkably variable in the G. intraradices genome. These analyses predict the presence of at least three chromosomes in G. intraradices while PFGE showed a pattern of four bands ranging from 1.2 to 1.5 Mb. Taken together, our results indicate that there are at least four chromosomes in G. intraradices but there are probably more. The information on TAS and telomeres in the G. intradicies will be essential for making a physical map of the G. intraradices genome and could provide molecular markers for future studies of genetic variation among nuclei in these multigenomic fungi.  相似文献   

20.
 The influence of an arbuscular mycorrhizal (AM) fungus on phosphorus (P) and iron (Fe) uptake of peanut (Arachis hypogea L.) and sorghum (Sorghum bicolor L.) plants was studied in a pot experiment under controlled environmental conditions. The plants were grown for 10 weeks in pots containing sterilised calcareous soil with two levels of Fe supply. The soil was inoculated with rhizosphere microorganisms only or with rhizosphere microorganisms together with an AM fungus (Glomus mosseae [Nicol. & Gerd.] Gerdemann & Trappe). An additional small soil compartment accessible to hyphae but not roots was added to each pot after 6 weeks of plant growth. Radiolabelled P and Fe were supplied to the hyphae compartment 2 weeks after addition of this compartment. After a further 2 weeks, plants were harvested and shoots were analysed for radiolabelled elements. In both plant species, P uptake from the labelled soil increased significantly more in shoots of mycorrhizal plants than non-mycorrhizal plants, thus confirming the well-known activity of the fungus in P uptake. Mycorrhizal inoculation had no significant influence on the concentration of labelled Fe in shoots of peanut plants. In contrast, 59Fe increased in shoots of mycorrhizal sorghum plants. The uptake of Fe from labelled soil by sorghum was particularly high under conditions producing a low Fe nutritional status of the plants. These results are preliminary evidence that hyphae of an arbuscular mycorrhizal fungus can mobilise and/or take up Fe from soil and translocate it to the plant. Accepted: 6 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号