首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Interleukin-6 (IL-6) subfamily of cytokines, including oncostatin M (OSM), leukemia inhibitory factor (LIF), and IL-6, has been implicated in a variety of physiological responses, such as cell growth, differentiation, and inflammation. In the present study, we demonstrated that both OSM and LIF stimulated the proliferation of human adipose tissue-derived mesenchymal stem cells (hATSCs), however, IL-6 had no effect on cell proliferation. OSM treatment induced phosphorylation of ERK, and pretreatment with U0126, a MEK inhibitor, prevented the OSM-stimulated proliferation of hATSCs, suggesting that the MEK/ERK pathway is involved in the OSM-induced proliferation. Treatment with OSM also induced phosphorylation of JAK2 and JAK3, and pretreatment of the cells with WHI-P131, a JAK3 inhibitor, but not with AG490, a JAK2 inhibitor, attenuated the OSM-induced proliferation of hATSCs. Furthermore, OSM treatment elicited phosphorylation of STAT1 and STAT3, and pretreatment with WHI-P131 specifically prevented the OSM-induced phosphorylation of STAT1, without affecting the OSM-induced phosphorylation of ERK and STAT3. These results suggest that two separate signaling pathways, such as MEK/ERK and JAK3/STAT1, are independently involved in the OSM-stimulated proliferation of hATSCs.  相似文献   

3.
4.
Park JI  Strock CJ  Ball DW  Nelkin BD 《Cytokine》2005,29(3):125-134
Interleukin-1beta (IL-1beta) is a pleiotropic cytokine that can induce several cellular signal transduction pathways. Here, we show that IL-1beta can induce cell cycle arrest and differentiation in the human medullary thyroid carcinoma (MTC) cell line, TT. IL-1beta induces cell cycle arrest accompanied by morphological changes and expression of the neuroendocrine marker calcitonin. These changes are blocked by the MEK1/2 specific inhibitor U0126, indicating that MEK1/2 is essential for IL-1beta signaling in TT cells. IL-1beta induces expression of leukemia inhibitory factor (LIF) and activation of STAT3 via the MEK/ERK pathway. This activation of STAT3 could be abrogated by treatment with anti-LIF neutralizing antibody or anti-gp130 blocking antibody, indicating that induction of LIF expression is sufficient and essential for STAT3 activation by IL-1beta. In addition to activation of the LIF/JAK/STAT pathway, IL-1beta also induced an MEK/ERK-mediated intracellular cell-autonomous signaling pathway that is independently sufficient for growth arrest and differentiation. Thus, IL-1beta activates the MEK/ERK pathway to induce growth arrest and differentiation in MTC cells via dual independent signaling mechanisms, the cell-extrinsic LIF/JAK/STAT pathway, and the cell-intrinsic autonomous signaling pathway.  相似文献   

5.
Interleukin-6 (IL-6) family cytokines play important roles in cardioprotection against pathological stresses. IL-6 cytokines bind to their specific receptors and activate glycoprotein 130 (gp130), a common receptor, followed by further activation of STAT3 and extracellular signal-regulated kinase (ERK)1/2 through janus kinases (JAKs); however the importance of glycosylation of gp130 remains to be elucidated in cardiac myocytes. In this study, we examined the biological significance of gp130 glycosylation using tunicamycin (Tm), an inhibitor of enzyme involved in N-linked glycosylation. In cardiomyocytes, the treatment with Tm completely replaced the glycosylated form of gp130 with its unglycosylated one. Tm treatment inhibited leukemia inhibitory factor (LIF)-mediated activation of STAT3 and ERK1/2. Similarly, IL-11 failed to activate STAT3 and ERK1/2 in the presence of Tm. Interestingly, Tm inhibited the activation of JAKs 1 and 2, without influencing the expression of suppressor of cytokine signalings (SOCSs) and protein-tyrosine phosphatase 1B (PTP1B), which are endogenous inhibitors of JAKs. To exclude the possibility that Tm blocks LIF and IL-11 signals by inhibiting the glycosylation of their specific receptors, we investigated whether the stimulation with IL-6 plus soluble IL-6 receptor (sIL-6R) could transduce their signals in Tm-treated cardiomyocytes and found that this stimulation was unable to activate the downstream signals. Collectively, these findings indicate that glycosylation of gp130 is essential for signal transduction of IL-6 family cytokines in cardiomyocytes.  相似文献   

6.
7.
8.
We previously showed that basic fibroblast growth factor (bFGF) stimulates release of vascular endothelial growth factor (VEGF) and synthesis of interleukin-6 (IL-6) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effects of leukemia inhibitory factor (LIF) on the release of VEGF and IL-6 in these cells. LIF did not affect the bFGF-stimulated VEGF release. On the contrary, LIF, which alone had little effect on IL-6 release, significantly enhanced the bFGF-stimulated IL-6 release. The amplifying effect of LIF on the IL-6 release was dose dependent in the range between 0.01 and 10 ng/ml. AG490, an inhibitor of JAK2, suppressed the amplifying effect of LIF. LIF induced the phosphorylation of STAT3. AG490 inhibited the LIF-induced STAT3 phosphorylation. Taken together, our results strongly suggest that LIF enhances bFGF-stimulated IL-6 synthesis via JAK2/STAT3 pathway in osteoblasts.  相似文献   

9.
Age-related changes in lymphocytes are most prominent in the T cell compartment. There have been substantial numbers of reports on T cell function in aged mice and humans, such as on the production of Th1 and Th2 cytokines, but the results show considerable variation and contradictions. In the present study, we used 8- to 12-mo-old aging mice and a well-established in vitro Th1/Th2 cell differentiation culture system to identify molecular defects in Th1/Th2 cell differentiation that can be detected in the relatively early stages of aging. The capability to differentiate into Th2 cells is reduced in aging mouse CD4(+) T cells. Decreased activation of the ERK MAPK cascade upon TCR stimulation, but normal intracellular-free calcium ion concentration mobilization and normal IL-4-induced STAT6 activation were observed in aging mouse CD4(+) T cells. In addition, reduced expression of GATA3 was detected in developing Th2 cells. Chromatin remodeling of the Th2 cytokine gene locus was found to be impaired. Th2-dependent allergic airway inflammation was milder in aging mice compared with in young adult mice. These results suggest that the levels of Th2 cell differentiation and resulting Th2-dependent immune responses, including allergic airway inflammation, decline during aging through defects in the activation of the ERK MAPK cascade, expression of GATA3 protein and GATA3-dependent chromatin remodeling of the Th2 cytokine gene locus. In the present study, we provide the first evidence indicating that a chromatin-remodeling event in T cells is impaired by aging.  相似文献   

10.
Hepatic progenitor cells (HPCs) persist in adulthood and have the potential to play a major role in regenerating diseased liver. However, the signaling pathways that both directly and indirectly regulate HPCs’ self-renewal and differentiation remain elusive. Previously, we identified a bipotent, stem cell antigen-1 (Sca-1) positive HPC population from naïve adult liver tissue. In the present study, we aimed to investigate the involvement of various signaling pathways in Sca-1+ HPC proliferation. Epidermal growth factor (EGF) supplementation shows a significant increase in Sca-1+ HPC proliferation and colony formation while stimulating phosphorylation of ERK1/2 and activating the induction of Cyclin D1. There were no demonstrable effects of EGF on Akt. The MEK inhibitor, PD0325901, inhibits proliferation and ERK1/2 phosphorylation while also suppressing the expression of Cyclin D1. In addition, activation of either IL-6/STAT3 or Wnt/β-Catenin pathway did not independently support cell proliferation and colony formation of HPCs. The Wnt/β-Catenin pathway can cooperate with EGF to significantly promote HPC colony formation ratio and maintain long-term HPC in vitro. The data indicates that the MAPK/ERK pathway is both essential and critical for HPC proliferation, and the Wnt signaling pathway is not sufficient, while it works synergistically with the MAPK/ERK signaling pathway to promote HPC proliferation.  相似文献   

11.
12.
13.

Methods and Results

The cardiac stem/progenitor cells from adult mice were seeded at low density in serum-free medium. The colonies thus obtained were expanded separately and assessed for expression of stem cell antigen-1 (Sca-1). Two colonies each with high Sca-1 (CSH1; 95.9%; CSH2; 90.6%) and low Sca-1 (CSL1; 37.1%; CSL2; 17.4%) expressing cells were selected for further studies. Sca-1+ cells (98.4%) isolated using Magnetic Cell Sorting System (MACS) from the hearts were used as a control. Although the selected populations were similar in surface marker expression (low in c-kit, CD45, CD34, CD31 and high in CD29), these cells exhibited diverse differentiation potential. Unlike CSH1, CSH2 expressed Nanog, TERT, Bcrp1, Nestin, Musashi1 and Isl-1, and also showed differentiation into osteogenic, chondrogenic, smooth muscle, endothelial and cardiac lineages. MACS sorted cells exhibited similar tendency albeit with relatively weaker differentiation potential. Transplantation of CSH2 cells into infarcted heart showed attenuated infarction size, significantly preserved left ventricular function and anterior wall thickness, and increased capillary density. We also observed direct differentiation of transplanted cells into endothelium and cardiomyocytes.

Conclusions

The cardiac stem/progenitor cells isolated by a combined clonal selection and surface marker approach possessed multiple stem cell features important for cardiac regeneration.  相似文献   

14.
15.
NK cells differentiate into either NK1 or NK2 cells that produce IFN-gamma or IL-5 and IL-13, respectively. Little is known, however, about the molecular mechanisms that control NK1 and NK2 cell differentiation. To address these questions, we established an in vitro mouse NK1/NK2 cell differentiation culture system. For NK1/NK2 cell differentiation, initial stimulation with PMA and ionomycin was required. The in vitro differentiated NK2 cells produced IL-5 and IL-13, but the levels were 20 times lower than those of Th2 or T cytotoxic (Tc)2 cells. No detectable IL-4 was produced. Freshly prepared NK cells express IL-2Rbeta, IL-2RgammaC, and IL-4Ralpha. After stimulation with PMA and ionomycin, NK cells expressed IL-2Ralpha. NK1 cells displayed higher cytotoxic activity against Yac-1 target cells. The levels of GATA3 protein in developing NK2 cells were approximately one-sixth of those in Th2 cells. Both NK1 and NK2 cells expressed large amounts of repressor of GATA, the levels of which were equivalent to CD8 Tc1 and Tc2 cells and significantly higher than those in Th2 cells. The levels of histone hyperacetylation of the IL-4 and IL-13 gene loci in NK2 cells were very low and equivalent to those in naive CD4 T cells. The production of IL-5 and IL-13 in NK2 cells was found to be STAT6 dependent. Thus, similar to Th2 cells, NK2 cell development is dependent on STAT6, and the low level expression of GATA3 and the high level expression of repressor of GATA may influence the unique type 2 cytokine production profiles of NK2 cells.  相似文献   

16.
Interleukin (IL)-6 decreases cardiac contractility via a nitric oxide (NO)-dependent pathway. However, mechanisms underlying IL-6-induced NO production remain unclear. JAK2/STAT3 and ERK1/2 are two well known signaling pathways activated by IL-6 in non-cardiac cells. However, these IL-6-activated pathways have not been identified in adult cardiac myocytes. In this study, we identified activation of these two pathways during IL-6 stimulation and examined their roles in IL-6-induced NO production and decrease in contractility of adult ventricular myocytes. IL-6 increased phosphorylation of STAT3 (at Tyr(705)) and ERK1/2 (at Tyr(204)) within 5 min that peaked at 15-30 min and returned to basal levels at 2 h. Phosphorylation of STAT3 was blocked by genistein, a protein tyrosine kinase inhibitor, and AG490, a JAK2 inhibitor, but not PD98059, an ERK1/2 kinase inhibitor. The phosphorylation of ERK1/2 was blocked by PD98059 and genistein but not AG490. Furthermore, IL-6 enhanced de novo synthesis of iNOS protein, increased NO production, and decreased cardiac contractility after 2 h of incubation. These effects were blocked by genistein and AG490 but not PD98059. We conclude that IL-6 activated independently the JAK2/STAT3 and ERK1/2 pathways, but only JAK2/STAT3 signaling mediated the NO-associated decrease in contractility.  相似文献   

17.
Anticancer therapies, such as targeting of STAT3 or the use of anthracyclins (doxorubicin), can induce cardiomyopathy. In mice prone to developing heart failure as a result of reduced cardiac STAT3 expression (cardiomyocyte-restricted deficiency of STAT3) or treatment with doxorubicin, we observed impaired endothelial differentiation capacity of Sca-1(+) cardiac progenitor cells (CPCs) in conjunction with attenuated CCL2/CCR2 activation. Mice in both models also displayed reduced erythropoietin (EPO) levels in the cardiac microenvironment. EPO binds to CPCs and seems to be responsible for maintaining an active CCL2/CCR2 system. Supplementation with the EPO derivative CERA in a hematocrit-inactive low dose was sufficient to upregulate CCL2, restore endothelial differentiation of CPCs, and preserve the cardiac microvasculature and cardiac function in both mouse models. Thus, low-dose EPO treatment could potentially be exploited as a therapeutic strategy to reduce the risk of heart failure in certain treatment regimens.  相似文献   

18.
19.
T helper (Th) cells differentiate into functionally distinct effector cell subsets of which Th1 and Th2 cells are best characterized. Besides T cell receptor signaling, IL-12-induced STAT4 and T-bet- and IL-4-induced STAT6 and GATA3 signaling pathways are the major players regulating the Th1 and Th2 differentiation process, respectively. However, there are likely to be other yet unknown factors or pathways involved. In this study we used quantitative proteomics exploiting cleavable ICAT labeling and LC-MS/MS to identify IL-4-regulated proteins from the microsomal fractions of CD4(+) cells extracted from umbilical cord blood. We were able to identify 557 proteins of which 304 were also quantified. This study resulted in the identification of the down-regulation of small GTPases GIMAP1 and GIMAP4 by IL-4 during Th2 differentiation. We also showed that both GIMAP1 and GIMAP4 genes are up-regulated by IL-12 and other Th1 differentiation-inducing cytokines in cells induced to differentiate toward Th1 lineage and down-regulated by IL-4 in cells induced to Th2. Our results indicate that the GIMAP (GTPase of the immunity-associated protein) family of proteins is differentially regulated during Th cell differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号