首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The hrp genes of Pseudomonas syringae pv. phaseolicola control the development of primary disease symptoms in bean plants and the elicitation of the hypersensitive response in resistant plants. We examined the expression of the seven operons located in the 22-kb hrp cluster (L. G. Rahme, M. N. Mindrinos, and N. J. Panopoulos, J. Bacteriol. 173:575-586, 1991) in planta and in vitro under different physiological and nutritional conditions by using chromosomally located hrp::inaZ reporter fusions. We show that (i) a plant signal(s) is specifically required for the induction of the seven hrp operons, during both compatible and incompatible interactions; (ii) hrpL and hrpRS are regulated by different mechanisms in planta and in vitro; and (iii) expression of individual hrp loci is differentially affected by pH, osmotic strength, and type of carbon source: hrpAB, hrpC, and hrpD were downregulated similarly by osmolarity, pH, and certain carbon sources; hrpE expression was affected strongly by pH and carbon substrate and slightly by osmolarity; and hrpF was not substantially affected by any of these factors. These findings suggest complex signaling mechanisms taking place during plant-pathogen interactions.  相似文献   

4.
The type III secretion system (TTSS) is a specialized protein secretion machinery used by numerous gram-negative bacterial pathogens of animals and plants to deliver effector proteins directly into the host cells. In plant-pathogenic bacteria, genes encoding the TTSS were discovered as hypersensitive response and pathogenicity (hrp) genes, because mutation of these genes typically disrupts the bacterial ability to cause diseases on host plants and to elicit hypersensitive response on nonhost plants. The hrp genes and the type III effector genes (collectively called TTSS genes hereafter) are repressed in nutrient-rich media but induced when bacteria are infiltrated into plants or incubated in nutrient-deficient inducing media. Multiple regulatory components have been identified in the plant-pathogenic bacteria regulating TTSS genes under various conditions. In Ralstonia solanacearum, several signal transduction components essential for the induction of TTSS genes in plants are dispensable for the induction in inducing medium. In addition to the inducing signals, recent studies indicated the presence of negative signals in the plant regulating the Pseudomonas syringae TTSS genes. Thus, the levels of TTSS gene expression in plants likely are determined by the interactions of multiple signal transduction pathways. Studies of the hrp regulons indicated that TTSS genes are coordinately regulated with a number of non-TTSS genes.  相似文献   

5.
摘要:【目的】决定水稻条斑病菌(Xanthomonas oryzae pv. oryzicola)在非寄主植物上激发过敏反应(hypersensitive response, HR)和在寄主水稻上致病性(pathogenicity)的hrp基因簇是受hrpG和hrpX基因调控的,但还不清楚hrpG和hrpX基因是否共同决定着所有hrp基因的表达。【方法】本文通过基因敲除方式获得了水稻条斑病菌的hrpG和hrpX基因的双突变体。【结果】烟草和水稻上测定结果显示,双突变体与单突变体一样,均在烟草上失去HR激发能力和丧失在水稻上的致病性;相应地,功能互补后双突变体恢复至野生表型。细菌在水稻悬浮细胞、hrp诱导培养基XOM3和营养丰富的培养基NB中生长后的RT-PCR结果显示,NB中hrp基因低水平表达,XOM3和水稻细胞能够高水平诱导hrp基因表达。无论何种生长条件,hrpG单突变体中hrcC、hrcT、hpa3和hrpE基因表达,而hpa1、hpa2、hpaB、hrcJ和hrpG基因不表达;hrpX单突变体中hpa2、hrcC、hpa3、hrpE和hrpG基因表达,而hpa1、hrcT、hpaB和hrcJ基因不表达;hrpG和hrpX双突变体中hrcC、hpa3和hrpE基因表达,而hpa1、hpa2、hpaB、hrcT、hrcJ和hrpG基因不表达。【结论】这提示,水稻条斑病菌的hrcC、hrpE和hpa3基因不受hrpG和hrpX基因单独或同时调控,而hrcT基因受HrpG调控。由此推测,水稻条斑病菌III型分泌系统关键组份的表达有可能通过另外的信号途径进行调控,这为进一步分析III型分泌途经的形成提供了线索。  相似文献   

6.
水稻条斑病细菌(Xanthomonas oryzae pv.oryzicola,Xooc)决定在非寄主植物上激发过敏反应(hypersensitive response)和在寄主水稻上具致病性(pathogenicity)的hrp基因簇是诱导表达的。为研究hrp基因的功能,利用hpa1和hrpX基因的启动子与gfp基因进行融合,构建了hrp基因诱导表达系统。绿色荧光蛋白表达揭示,Xoochrp基因在营养丰富的NB培养基上不能有效表达,在hrp诱导培养基XOM3上可有效表达。以hrpXhrpG突变体为参照,RT-PCR研究结果提示,Xooc野生型菌株hpa1基因在NB上不能有效表达,在XOM3培养基上可有效表达。相应地,hrpX突变体中hpa1基因不能被诱导表达,而在hrpG突变体中hpa1基因转录表达水平低于野生菌。研究结果还证实,水稻悬浮细胞能高效诱导Xoochrp基因表达。Xooc hrp基因诱导表达系统的建立为研究hrp基因功能、发掘T3SS效应分子以及开展Xooc致病性研究奠定了基础。  相似文献   

7.
8.
9.
Xanthomonas oryzae pv. oryzicola, the cause of bacterial leaf streak in rice, possesses clusters of hrp genes that determine its ability to elicit a hypersensitive response (HR) in nonhost tobacco and pathogenicity in host rice. A 27-kb region of the genome of X. oryzae pv. oryzicola (RS105) was identified and sequenced, revealing 10 hrp, 9 hrc (hrp conserved), and 8 hpa (hrp-associated) genes and 7 regulatory plant-inducible promoter boxes. While the region from hpa2 to hpaB and the hrpF operon resembled the corresponding genes of other xanthomonads, the hpaB-hrpF region incorporated an hrpE3 gene that was not present in X. oryzae pv. oryzae. We found that an hrpF mutant had lost the ability to elicit the HR in tobacco and pathogenicity in adult rice plants but still caused water-soaking symptoms in rice seedlings and that Hpa1 is an HR elicitor in nonhost tobacco whose expression is controlled by an hrp regulator, HrpX. Using an Hrp phenotype complementation test, we identified a small hrp cluster containing the hrpG and hrpX regulatory genes, which is separated from the core hrp cluster. In addition, we identified a gene, prhA (plant-regulated hrp), that played a key role in the Hrp phenotype of X. oryzae pv. oryzicola but was neither in the core hrp cluster nor in the hrp regulatory cluster. A prhA mutant failed to reduce the HR in tobacco and pathogenicity in rice but caused water-soaking symptoms in rice. This is the first report that X. oryzae pv. oryzicola possesses three separate DNA regions for HR induction in nonhost tobacco and pathogenicity in host rice, which will provide a fundamental base to understand pathogenicity determinants of X. oryzae pv. oryzicola compared with those of X. oryzae pv. oryzae.  相似文献   

10.
11.
12.
13.
14.
Phytophthora spp. secrete proteins called elicitins in vitro that can specifically induce hypersensitive response and systemic acquired resistance in tobacco. In Phytophthora parasitica, the causal agent of black shank, most isolates virulent on tobacco are unable to produce elicitins in vitro. Recently, however, a few elicitin-producing P. parasitica strains virulent on tobacco have been isolated. We investigated the potential diversity of elicitin genes in P. parasitica isolates belonging to different genotypes and with various virulence levels toward tobacco as well as elicitin expression pattern in vitro and in planta. Although elicitins are encoded by a multigene family, parAl is the main elicitin gene expressed. This gene is highly conserved among isolates, regardless of the elicitin production and virulence levels toward tobacco. Moreover, we show that elicitin-producing P. parasitica isolates virulent on tobacco down regulate parAl expression during compatible interactions, whichever host plant is tested. Conversely, one elicitin-producing P. parasitica isolate that is pathogenic on tomato and avirulent on tobacco still expresses parAl in the compatible interaction. Therefore, some P. parasitica isolates may evade tobacco recognition by down regulating parA1 in planta. The in planta down regulation of parA1 may constitute a suitable mechanism for P. parasitica to infect tobacco without deleterious consequences for the pathogen.  相似文献   

15.
16.
17.
Pseudomonas syringae is a plant pathogen whose pathogenicity and host specificity are thought to be determined by Hop/Avr effector proteins injected into plant cells by a type III secretion system. P. syringae pv. syringae B728a, which causes brown spot of bean, is a particularly well-studied strain. The type III secretion system in P. syringae is encoded by hrp (hypersensitive response and pathogenicity) and hrc (hrp conserved) genes, which are clustered in a pathogenicity island with a tripartite structure such that the hrp/hrc genes are flanked by a conserved effector locus and an exchangeable effector locus (EEL). The EELs of P. syringae pv. syringae B728a, P. syringae strain 61, and P. syringae pv. tomato DC3000 differ in size and effector gene composition; the EEL of P. syringae pv. syringae B728a is the largest and most complex. The three putative effector proteins encoded by the P. syringae pv. syringae B728a EEL--HopPsyC, HopPsyE, and HopPsyV--were demonstrated to be secreted in an Hrp-dependent manner in culture. Heterologous expression of hopPsyC, hopPsyE, and hopPsyV in P. syringae pv. tabaci induced the hypersensitive response in tobacco leaves, demonstrating avirulence activity in a nonhost plant. Deletion of the P. syringae pv. syringae B728a EEL strongly reduced virulence in host bean leaves. EELs from nine additional strains representing nine P. syringae pathovars were isolated and sequenced. Homologs of avrPphE (e.g., hopPsyE) and hopPsyA were particularly common. Comparative analyses of these effector genes and hrpK (which flanks the EEL) suggest that the EEL effector genes were acquired by horizontal transfer after the acquisition of the hrp/hrc gene cluster but before the divergence of modern pathovars and that some EELs underwent transpositions yielding effector exchanges or point mutations producing effector pseudogenes after their acquisition.  相似文献   

18.
【目的】白叶枯病菌hrp基因簇由包括hrpD6在内的26个hpa-hrp-hrc基因组成,与植物互作后形成Ⅲ型分泌系统(T3S),将T3S效应分子注入寄主细胞中从而决定在非寄主上的过敏反应(HR)和在水稻上的致病性。但hrpD6基因是否参与了白叶枯病菌在非寄主上的过敏反应(HR)和在水稻上的致病性(pathogenicity)还不清楚。【方法】借助同源重组方法,本研究对白叶枯病菌hrpD6基因进行了突变。【结果】PCR和Southern杂交结果显示,hrpD6基因被成功敲除。烟草上测定结果显示,hrpD6突变体ΔPhrpD6丧失了HR激发能力。致病性测定发现,ΔPhrpD6在水稻苗期不能形成水渍症状,在成株期水稻上不具有致病性,并且细菌生长能力显著下降。功能互补结果显示,hrpD6基因可恢复ΔPhrpD6在烟草上激发HR和在水稻上的致病性以及在水稻组织中的生长能力。RT-PCR结果显示,hrpD6基因的转录表达不仅受水稻诱导,而且受hrpG和hrpX基因调控。不仅如此,hrpD6基因突变还影响T3S效应分子hpa1基因的转录表达和Hpa1蛋白的分泌,暗示hrpD6基因对hpa1基因转录表达具有调控作用。【结论】hrpD6基因的缺失导致白叶枯病菌不能激发烟草产生HR和和丧失在水稻上的致病性,主要是HrpD6对hpa1基因转录表达具有调控作用,并影响T3S效应分子Hpa1的分泌。这些结果为进一步分析hrpD6是否参与T3S分泌装置的形成和调控其它hrp基因的转录表达从而决定病菌在非寄主上的HR和在水稻上的致病性,提供了科学线索。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号