首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Life sciences》1995,57(3):PL45-PL50
Ibogaine is a hallucinogenic indole with putative efficacy for the treatment of cocaine, stimulant and opiate abuse. The purported efficacy of ibogaine following single dose administrations has led to the suggestion that a long-acting metabolite of ibogaine may explain in part how the drug reduces craving for psychostimulants and opiates. We report here that 12-hydroxyibogamine, a primary metabolite of ibogaine, displays high affinity for the 5-HT transporter and elevates extracellular 5-HT. In radioligand binding assays, 12-hydroxyibogamine was 50-fold more potent at displacing radioligand binding at the 5-HT transporter than at the DA transporter. Ibogaine and 12-hydroxyibogamine were equipotent at the dopamine transporter. In vivo microdialysis was used to evaluate the acute actions of ibogaine and 12-hydroxyibogamine on the levels of DA and 5-HT. Administration of 12-hydroxyibogamine produced a marked dose-related elevation of extracellular 5-HT. Ibogaine and 12-hydroxyibogamine failed to elevate DA levels in the nucleus accumbens over the dose range tested. The elevation in synaptic levels of 5-HT by 12-hydroxyibogamine may heighten mood and attenuate drug craving. The effects of the active metabolite on 5-HT transmission may account in part for the potential of ibogaine to interrupt drug-seeking behavior in humans.  相似文献   

2.
Abstract: The weaver mutant mouse (wv/wv) has an ~70% loss of nigrostriatal dopamine (DA) neurons, but the fractional DA release evoked by amphetamine (but not a high potassium level) has been shown to be greater from striatal slices of the weaver compared with +/+ mice. In the present work we tested the hypothesis that fractional DA release from weaver striatum would be greater when release was mediated by the DA transporter. Serotonin (5-HT)-stimulated fractional DA release was greater from weaver than from +/+ striatum. The release evoked by 5-HT in the presence of 10 µM nomifensine (an antagonist of the DA transporter) was less than in its absence, but the difference between weaver and +/+ striatum remained. In the presence of nomifensine, 1-(m-chlorophenyl)biguanide, classified as a 5-HT3 agonist, also induced a greater fractional release from weaver compared with +/+ striatum. When veratridine was used at a low concentration (1 µM), the fractional evoked release of DA was higher from the weaver in the presence and absence of nomifensine. These findings suggest that the reason for the difference in the responsiveness of the two genotypes to these release-inducing agents is not related to DA transporter function.  相似文献   

3.
Neurotransmitter regulation of bone metabolism has been a subject of increasing interest and investigation. Dopamine (DA) has been reported to have effects on calcium and phosphorus metabolism. The dopamine transporter (DAT) is believed to control the temporal and spatial activity of released DA by rapid uptake of the neurotransmitter into presynaptic terminals. We have evaluated the histologic and biomechanical properties of the skeleton in mice homozygous for deletion of the DA transporter gene (DAT (-/-)) to help delineate the role of DA in bone biology. We have demonstrated that DAT (-/-) mice have reduced bone mass and strength. DAT (-/-) animals have shorter femur length and dry weight, and lower ash calcium content. Cancellous bone volume in the DAT (-/-) proximal tibial metaphysis is significantly decreased with reduced trabecular thickness. DAT (-/-) vertebrae have lower cancellous bone volume as a consequence of increased trabecular spacing and reduced trabecular number, and cortical thickness and bone area in the femoral diaphysis are reduced. The ultimate bending load (femoral strength) for the DAT (-/-) mice is 30% lower than the wild-type mice. Thus, deletion of the DAT gene results in deficiencies in skeletal structure and integrity. Since serotonin (5-HT) plays a role as a regulator of craniofacial morphogenesis, we explored the expression and function of 5-HT receptors and the 5-HT transporter (5-HTT) in bone. Primary cultures of rat osteoblasts (rOB) and a variety of clonal osteoblastic cell lines including ROS 17/2.8, UMR 106-H5 and Py1a show mRNA expression for the 5-HTT, and the 5-HT(1A), 5-HT(1D), 5-HT(2A) and 5-HT(2B) receptors by RT-PCR analysis and immunoblot. A relatively high density of nanomolar affinity 5-HTT binding sites is present in ROS 17/2.8 and UMR 106-H5 cells. The maximal [(3)H]5-HT uptake rate in ROS cells was 110 pmol/10 min/well, with a K(m) value of 1.13 microM. In normal differentiating rOB cultures, 5-HTT functional activity was observed initially at day 25, and activity increased by almost eight-fold at day 31. In mature rOB cultures, the estimated density of [(125)I]RTI-55 binding sites was 600 fmol/mg protein. PMA treatment caused a significant 40% reduction in the maximal uptake rate of [(3)H]5-HT, an effect prevented by pretreatment with staurosporine. 5-HT potentiates the PTH-induced increase in AP-1 activity in UMR 106-H5 cells. In 5-HTT (-/-) animals, cancellous bone volume (BV/TV) in the lumbar vertebrae is reduced, with a trend toward decreased trabecular thickness and trabecular number. These results demonstrate that osteoblastic cells express a functional serotonin system, with mechanisms for responding to and regulating uptake of 5-HT, and disruption of the 5-HTT gene may cause osteopenia.  相似文献   

4.
Abstract: Methyl 3β-(4-[125I]iodophenyl)tropane-2β-carboxylate ([123I]β-CIT) is a single photon emission computed tomographic radiotracer for in vivo labeling of dopamine (DA) and serotonin (5-HT) transporters. Single photon emission computed tomographic experiments in nonhuman primates showed that [123I]β-CIT in vivo binding to DA transporters had a much slower washout than binding to 5-HT transporters. This observation was not predicted from previously published in vitro studies. These studies, performed at 22°C in nonphysiological buffer, reported similar affinity of [125I]β-CIT for DA and 5-HT transporters. We now report [125I]β-CIT binding parameters to fresh rat membranes at 22°C and 37°C, in a buffer mimicking the composition of cerebrospinal fluid. At both temperatures, binding to DA transporters was best fit by a twosite model, whereas binding to 5-HT transporters was compatible with one population of sites. At 22°C, [125I]β-CIT showed similar affinity to high-affinity DA (0.39 n M ) and 5-HT transporter sites (0.47 n M ). Increasing the incubation temperature from 22°C to 37°C reduced binding to DA transporters by 60%, whereas binding to 5-HT transporters was only marginally affected. In vitro kinetic experiments failed to detect significant differences in on or off rates that could explain the observed in vivo kinetics. These experiments thus failed to explain [123 I]β-CIT in vivo uptake kinetics, suggesting the existence of specific factors affecting the in vivo situation.  相似文献   

5.
Although [3H]imipramine is a selective radioligand for the 5-hydroxytryptamine (5-HT) transporter in human platelets, its affinity for binding to the 5-HT transporter complex at 0 degrees C (0.6 nM) is significantly higher than its potency for inhibition of [3H]5-HT uptake at the physiological temperature of 37 degrees C (Ki = 29 nM). As this apparent discrepancy could be related to the assay temperature, we studied the thermodynamics of drug interaction with the 5-HT transporter at assay temperatures between 0 degrees C and 37 degrees C, using as radioligands [3H]imipramine (0 degrees C and 20 degrees C) and [3H]paroxetine (20 degrees C and 37 degrees C), a newly available probe for the 5-HT transporter. At 20 degrees C, Ki values of 14 tricyclic and nontricyclic drugs for inhibition of [3H]imipramine and [3H]paroxetine binding to human platelet membranes were highly significantly correlated (r = 0.98, p less than 0.001), validating the use of these two radioligands to study the 5-HT transporter over a temperature range larger than was previously possible with [3H]imipramine alone. The affinity of imipramine for the 5-HT transporter is progressively enhanced with decreasing incubation temperature, thus favoring the selectivity of [3H]imipramine for the 5-HT transporter at 0 degrees C. At 37 degrees C, the Ki of imipramine for inhibition of [3H]paroxetine binding is 32 nM, and equals its Ki value for inhibition of 5-HT uptake into human platelets. With the exception of chlorimipramine, other tricyclic 5-HT uptake inhibitors showed a temperature sensitivity in their interaction with the 5-HT transporter similar to that of imipramine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The dopamine (DA), serotonin (5-HT), and norepinephrine (NE) transporter releasing activity and serotonin-2A (5-HT2A) receptor agonist activity of a series of substituted tryptamines are reported. Three compounds, 7b, (+)-7d and 7f, were found to be potent dual DA/5-HT releasers and were >10-fold less potent as NE releasers. Additionally, these compounds had different activity profiles at the 5-HT2A receptor. The unique combination of dual DA/5-HT releasing activity and 5-HT2A receptor activity suggests that these compounds could represent a new class of neurotransmitter releasers with therapeutic potential.  相似文献   

7.
段云峰  吴晓丽  王涛  金锋 《生命科学》2013,(10):1027-1035
五羟色胺(5-HT)和多巴胺(DA)是影响攻击行为的重要神经递质。参与这两种神经递质合成和分解、运输及信号转导等过程的物质均可能影响攻击行为,如影响5-HT作用的色氨酸、色氨酸羟化酶、单胺氧化酶、5-羟吲哚乙酸及5-HT转运体和5-HT受体;影响DA作用的多巴胺β羟化酶和儿茶酚胺邻位甲基转移酶以及DA转运体。未来攻击行为研究,应考虑色氨酸自身代谢、受体亚型及其他单胺类和儿茶酚胺类神经递质的影响。将肠道微生物纳入攻击行为研究也是未来研究的新方向。  相似文献   

8.
A series of (bisarylmethoxy)butylpiperidine derivatives was prepared and evaluated in vitro and in vivo to determine the structural requirements necessary for dual activity at the DAT and DA/5-HT receptor sites. These hybrid ligands, constructed by combining pharmacophores specific for the DAT and DA/5-HT receptors, could be useful drugs for treating cocaine addiction by assisting cocaine addicts in maintaining abstinence. The series was evaluated in vitro for DAT and DA/5-HT receptor activity and then selected compounds were tested in vivo for their effects on cocaine-induced hyperlocomotor activity (LMA). The majority of the new compounds demonstrated high to moderate affinity (4–191 nM) for the DAT with 4-hydroxy-4-phenylpiperidine analogues 14 and 15 possessing the greatest affinity. Compounds 15 and 22 exhibited the highest ratio of reuptake inhibition-to-binding (discrimination ratio, DR), 111 and 323, respectively. These derivatives had modest affinity and antagonistic activity for dopamine D2/D3 receptors. Compounds 9 and 15 (DR=0.9 and 111, respectively) stimulated locomotor activity, whereas the other compounds suppressed this response. All compounds tested except for 17 and 21 attenuated cocaine-induced hyperlocomotion.  相似文献   

9.
五羟色胺转运体是一种对五羟色胺(5-HT,serotonin)有高度亲和力的跨膜转运蛋白,能够重新摄取细胞间隙内的5-HT,从而调节神经信号的转导。该文简述了五羟色胺转运体的生物学特性、分布以及与人类疾病的关系,通过分析比较发现,五羟色胺转运体的多态性与肠易激综合征、抑郁症、强迫症都有着密切的关系。  相似文献   

10.
A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit [3H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine transporter (DAT), [3H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and [3H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of the compounds exhibited potent inhibition of [3H]DA uptake at VMAT2, Ki changes in the nanomolar range (Ki?=?0.014–0.073?µM). Compound 15d exhibited the highest affinity (Ki?=?0.014?µM) at VMAT2, and had 160-, 5-, and 60-fold greater selectivity for VMAT2 vs. DAT, SERT and hERG, respectively. Compound 15b exhibited the greatest selectivity (>60-fold) for VMAT2 relative to all the other targets evaluated, and 15b had high affinity for VMAT2 (Ki?=?0.073?µM). Compound 15b was considered the lead compound from this analog series due to its high affinity and selectivity for VMAT2.  相似文献   

11.
Methamphetamine (METH) is a widely abused psychostimulant. Multiple high doses of METH cause long-term toxicity to dopamine (DA) and serotonin (5-HT) nerve terminals in the brain, as evidenced by decreases in DA and 5-HT content, decreases in tyrosine and tryptophan hydroxylase activities, decreases in DA and 5-HT re-uptake sites, and nerve terminal degeneration. Multiple high doses of METH are known to elicit a rapid increase in DA release and hyperthermia. Although METH also produces a delayed and sustained rise in glutamate, no studies have shown whether METH produces structural evidence of excitotoxicity in striatum, or identified the receptors that mediate this toxicity directly, independent of alterations in METH-induced hyperthermia. These experiments investigated whether METH can cause excitotoxicity as evidenced by cytoskeletal protein breakdown in a glutamate receptor-dependent manner. METH increased calpain-mediated spectrin proteolysis in the rat striatum 5 and 7 days after METH administration without affecting caspase 3-dependent spectrin breakdown. This effect was completely blocked with the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, GYKI 52466, but not the NMDA receptor antagonist, MK-801. However, AMPA or NMDA receptor antagonism did not attenuate the METH-induced depletions of the dopamine transporter (DAT). Independent mechanisms involved in mediating spectrin proteolysis and DAT protein loss are discussed.  相似文献   

12.
Citalopram, a selective serotonin (5-HT) uptake inhibitor with antidepressant properties, was found to bind with high affinity to the 5-HT transporter from human neuronal and platelet membranes. At 20 degrees C, KD was about 1.5 nM in both tissues. [3H]Citalopram bound to rat neuronal membranes with higher affinity than to human neuronal and platelet membranes; at 20 degrees C KD was about 0.7 nM. The Bmax value for the binding of [3H]citalopram to platelet membranes was close to that found using the 5-HT uptake inhibitors [3H]imipramine and [3H]paroxetine, suggesting that all three 5-HT uptake inhibitors bind to the 5-HT transporter. The dissociation rate of [3H]citalopram increased twofold with each 4-5 degree C increase in temperature in both human and rat membranes, although at any given temperature, the dissociation rate was about four times faster in the human neuronal and platelet membranes than in rat neuronal membranes.  相似文献   

13.
Atypical antipsychotics show preferential 5-HT 2A versus dopamine (DA) D2 receptor affinity. At clinical doses, they fully occupy cortical 5-HT2 receptors, which suggests a strong relationship with their therapeutic action. Half of the pyramidal neurones in the medial prefrontal cortex (mPFC) express 5-HT 2A receptors. Also, neurones excited through 5-HT 2A receptors project to the ventral tegmental area (VTA). We therefore hypothesized that prefrontal 5-HT 2A receptors can modulate DA transmission through excitatory mPFC-VTA inputs. In this study we used single unit recordings to examine the responses of DA neurones to local (in the mPFC) and systemic administration of the 5-HT 2A/2C agonist 1-[2,5-dimethoxy-4-iodophenyl-2-aminopropane] (DOI). Likewise, using microdialysis, we examined DA release in the mPFC and VTA (single/dual probe) in response to prefrontal and systemic drug administration. The local (in the mPFC) and systemic administration of DOI increased the firing rate and burst firing of DA neurones and DA release in the VTA and mPFC. The increase in VTA DA release was mimicked by the electrical stimulation of the mPFC. The effects of DOI were reversed by M100907 and ritanserin. These results indicate that the activity of VTA DA neurones is under the excitatory control of 5-HT 2A receptors in the mPFC. These observations may help in the understanding of the therapeutic action of atypical antipsychotics.  相似文献   

14.
The acute and long-term effects of the local perfusion of 3,4-methylenedioxymethamphetamine (MDMA) and the interaction with the mitochondrial inhibitor malonate (MAL) were examined in the rat striatum. MDMA, MAL or the combination of MAL with MDMA was reverse dialyzed into the striatum for 8 h via a microdialysis probe while extracellular dopamine (DA) and serotonin (5-HT) were measured. One week later, tissue immediately surrounding the probe was assayed for DA and 5-HT tissue content. Local perfusion of MDMA increased DA and 5-HT release but did not produce long-term depletion of DA or 5-HT in tissue. Malonate also increased both DA and 5-HT release but, in contrast to MDMA, produced only long-term depletion of DA. The combined perfusion of MDMA/MAL synergistically increased the release of DA and 5-HT and produced long-term depletion of both DA and 5-HT in tissue. These results support the conclusion that DA, compared with 5-HT, neurons are more susceptible to mitochondrial inhibition. Moreover, MDMA, which does not normally produce DA depletion in the rat, exacerbated MAL-induced DA depletions. The effect of MDMA in combination with MAL to produce 5-HT depletion suggests a role for bio-energetic stress in MDMA-induced toxicity to 5-HT neurons. Overall, these results highlight the importance of energy balance to the function of DA and 5-HT neurons and to the toxic effects of MDMA.  相似文献   

15.
The present microdialysis study evaluated the anticonvulsant activity of extracellular hippocampal dopamine (DA) and serotonin (5-HT) with concomitant assessment of the possible mutual interactions between these monoamines. The anticonvulsant effects of intrahippocampally applied DA and 5-HT concentrations were evaluated against pilocarpine-induced seizures in conscious rats. DA or 5-HT perfusions protected the rats from limbic seizures as long as extracellular DA or 5-HT concentrations ranged, respectively, between 70-400% and 80-350% increases compared with the baseline levels. Co-perfusion with the selective D(2) blocker remoxipride or the selective 5-HT(1A) blocker WAY-100635 clearly abolished all anticonvulsant effects. These anticonvulsant effects were mediated independently since no mutual 5-HT and DA interactions were observed as long as extracellular DA and 5-HT levels remained within these protective ranges. Simultaneous D(2) and 5-HT(1A) receptor blockade significantly aggravated pilocarpine-induced seizures. High extracellular DA (> 1000% increases) or 5-HT (> 900% increases) concentrations also worsened seizure outcome. The latter proconvulsive effects were associated with significant increases in extracellular glutamate (Glu) and mutual increases in extracellular monoamines. Our results suggest that, within a certain concentration range, DA and 5-HT contribute independently to the prevention of hippocampal epileptogenesis via, respectively, D(2) and 5-HT(1A) receptor activation.  相似文献   

16.
17.
X M Guan  W J McBride 《Life sciences》1988,42(25):2625-2631
The effect of local pH on the in vivo efflux of endogenous dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) following administration of d-amphetamine (AMPH) was examined in the striatum of the anesthetized rat using two bilaterally placed push-pull cannulae. At both pH 7.3 and 6.4, the baseline efflux values for DA and DOPAC were approximately 0.2 and 25 pmoles/15 min, respectively. Subcutaneous injection of 2 mg/kg AMPH induced a 3-fold increase of DA release at pH 7.3 and a 21-fold increase of DA release at pH 6.4. In both cases, the maximum was reached at about 30 min after the drug administration. Following the administration of AMPH, the efflux of DOPAC was reduced to the same degree (20% of control values) under both pH conditions. In vitro data showed that the lower pH did not alter the recovery of DA or DOPAC. In addition, release of DA produced by local perfusion with 5 uM AMPH was also greater at the lower pH (50-fold increase over baseline) than at the physiological pH (10-fold increase over baseline). The stimulated DA release produced by local perfusion with 35 mM K+, however, was the same at both pH values. Preliminary experiments also indicated that there was a pH effect for AMPH-induced serotonin (5-HT) release but that the difference in the amount of 5-HT in the two media was not nearly as large as that obtained for DA. The markedly elevated level of extracellular DA at the lower pH might be due to a higher affinity of the DA uptake system for AMPH, thereby producing greater inhibition of DA uptake as well as enhanced DA release. The data also suggest an enhanced affinity of AMPH for 5-HT uptake sites at the lower pH.  相似文献   

18.
J A Nielsen  C A Johnston 《Life sciences》1982,31(25):2847-2856
Assays capable of measuring picomole quantities of dopamine (DA), 5-hydroxytryptamine (5-HT), several of their precursors and metabolites concurrently within 25 minutes were developed utilizing high performance liquid chromatography with electrochemical detection (LCEC). Several parameters of the LCEC were altered in order to separate the compounds while maintaining a short assay time. The final LCEC systems demonstrated biological utility in that the DA metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the 5-HT metabolite 5-hydroxy-3-indoleacetic acid (5-HIAA) were detected in rat cerebrospinal fluid; in addition to these compounds, DA and 5-HT were measurable in the striatum, hypothalamus and median eminence of the rat brain. Pargyline decreased the concentrations of DOPAC, HVA and 5-HIAA and increased the 5-HT concentration in all three brain regions, and increased the DA concentration in the striatum. Probenecid increased all three acid metabolite concentrations in the hypothalamus and median eminence, while only the HVA and 5-HIAA concentrations were increased in the striatum. The DA and 5-HT concentrations were unaltered. The LCEC methods described in this paper should be useful in elucidating the mechanisms and roles of 5-HT and DA neurons in experimental paradigms of biological interest.  相似文献   

19.
A series of indolylcyclohexylamines possessing potent and selective serotonin reuptake inhibition is reported. The most interesting compounds proved to have subnanomolar 5-HT transporter activity, and exhibited moderate 5-HT(1A) affinity.  相似文献   

20.
H S Ahn  M H Makman 《Life sciences》1978,23(5):507-511
Serotonin (5-HT) sensitive adenylate cyclase in monkey anterior limbic cortex homogenates was further characterized and the effects of antipsychotic drugs and 5-HT anatagonists investigated. Differences in time course for stimulation by agonists and in responsiveness to receptor anatagonists of 5-HT-and dopamine (DA)-stimulated activities, were observed. Also there was an additivity of 5-HT and DA at maximally effective concentrations. Classical 5-HT antagonists blocked the 5-HT sensitive adenylate cyclase with a rank order of potency: methiothepin > cyproheptadine > methysergide. These 5-HT antagonists also effectively inhibited DA sensitive adenylate cyclase. Most antipsychotic drugs tested antagonized 5-HT stimulated activity although these drugs exhibited greater efficacies in blocking DA stimulated activity. Exceptions were molindone which failed to antagonize DA sensitive adenylate cyclase but effectively blocked 5-HT sensitive cyclase and pipamperone which was inactive in both cyclase systems. Haloperidol was a more selective antagonist of the DA sensitive adenylate cyclase than were the other antipsychotic drugs tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号