首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence for a Genetically Stable Strain of Campylobacter jejuni   总被引:1,自引:0,他引:1       下载免费PDF全文
The genetic stability of selected epidemiologically linked strains of Campylobacter jejuni during outbreak situations was investigated by using subtyping techniques. Strains isolated from geographically related chicken flock outbreaks in 1998 and from a human outbreak in 1981 were investigated. There was little similarity in the strains obtained from the different chicken flock outbreaks; however, the strains from each of three chicken outbreaks, including strains isolated from various environments, were identical as determined by fla typing, amplified fragment length polymorphism (AFLP) analysis, and pulsed-field gel electrophoresis, which confirmed the genetic stability of these strains during the short time courses of chicken flock outbreaks. The human outbreak samples were compared with strain 81116, which originated from the same outbreak but has since undergone innumerable laboratory passages. Two main AFLP profiles were recognized from this outbreak, which confirmed the serotyping results obtained at the time of the outbreak. The major type isolated from this outbreak (serotype P6:L6) was exemplified by strain 81116. Despite the long existence of strain 81116 as a laboratory strain, the AFLP profile of this strain was identical to the profiles of all the other historical P6:L6 strains from the outbreak, indicating that the genotype has remained stable for almost 20 years. Interestingly, the AFLP profiles of the P6:L6 group of strains from the human outbreak and the strains from one of the recent chicken outbreaks were also identical. This similarity suggests that some clones of C. jejuni remain genetically stable in completely different environments over long periods of time and considerable geographical distances.  相似文献   

2.
A genetic locus from Campylobacter jejuni 81-176 (O:23, 36) has been characterized that appears to be involved in glycosylation of multiple proteins, including flagellin. The lipopolysaccharide (LPS) core of Escherichia coli DH5alpha containing some of these genes is modified such that it becomes immunoreactive with O:23 and O:36 antisera and loses reactivity with the lectin wheat germ agglutinin (WGA). Site-specific mutation of one of these genes in the E. coli host causes loss of O:23 and O:36 antibody reactivity and restores reactivity with WGA. However, site-specific mutation of each of the seven genes in 81-176 failed to show any detectable changes in LPS. Multiple proteins from various cellular fractions of each mutant showed altered reactivity by Western blot analyses using O:23 and O:36 antisera. The changes in protein antigenicity could be restored in one of the mutants by the presence of the corresponding wild-type allele in trans on a shuttle vector. Flagellin, which is known to be a glycoprotein, was one of the proteins that showed altered reactivity with O:23 and O:36 antiserum in the mutants. Chemical deglycosylation of protein fractions from the 81-176 wild type suggests that the other proteins with altered antigenicity in the mutants are also glycosylated.  相似文献   

3.
Campylobacter is one of the leading causes of food-borne gastroenteritis and has a high prevalence in poultry. Campylobacter jejuni subsp. jejuni 327 is a subspecies of the genus Campylobacter of the family Campylobacteraceae in the phylum Proteobacteria. The microaerophilic, spiral shaped, catalase positive bacterium obtains energy from the metabolism of amino acids and Krebs cycle intermediates. Strain 327 was isolated from a turkey slaughter production line and is considered environmentally sensitive to food processing (cold, heat, drying) and storage conditions. The 327 whole genome shotgun sequence of 1,618,613 bp long consists of 1,740 protein-coding genes, 46 tRNA genes and 3 rRNA operons. A protein based BLAST analysis places the turkey isolate 327 close to the human clinical strain 81116 (NCTC 11828).  相似文献   

4.
Campylobacter jejuni is one of the leading causes of bacterial gastroenteritis in the world; however, there is only one complete genome sequence of a poultry strain to date. Here we report the complete genome sequence and annotation of the second poultry strain, C. jejuni strain S3. This strain has been shown to be nonmotile, to be a poor invader in vitro, and to be a poor colonizer of poultry after minimal in vitro passage.  相似文献   

5.
Campylobacter jejuni   总被引:3,自引:0,他引:3  
This review describes characteristics of the family Campylobacteraceae and traits of Campylobacter jejuni. The review then focuses on the worldwide problem of C. jejuni antimicrobial resistance and mechanisms of pathogenesis and virulence. Unravelling these areas will help with the development of new therapeutic agents and ultimately decrease illness caused by this important human pathogen.  相似文献   

6.
Campylobacter jejuni is a leading cause of human gastroenteritis worldwide. This study aimed at a better understanding of the genetic diversity of this pathogen disseminated in Japan. We performed multilocus sequence typing (MLST) of Campylobacter jejuni isolated from different sources (100 human, 61 poultry, and 51 cattle isolates) in Japan between 2005 and 2006. This approach identified 62 sequence types (STs) and 19 clonal complexes (CCs), including 11 novel STs. These 62 STs were phylogenetically divided into 6 clusters, partially exhibiting host association. We identified a novel ST (ST-4526) that has never been reported in other countries; a phylogenetic analysis showed that ST-4526 and related STs showed distant lineage from the founder ST, ST-21 within CC-21. Comparative genome analysis was performed to investigate which properties could be responsible for the successful dissemination of ST-4526 in Japan. Results revealed that three representative ST-4526 isolates contained a putative island comprising the region from Cj0737 to Cj0744, which differed between the ST-4526 isolates and the reference strain NCTC11168 (ST-43/CC-21). Amino acid sequence alignment analyses showed that two of three ST-4526 isolates expressed 693aa- filamentous hemagglutination domain protein (FHA), while most of other C. jejuni strains whose genome were sequenced exhibited its truncation. Correspondingly, host cell binding of FHA-positive C. jejuni was greater than that of FHA-truncated strains, and exogenous administration of rFHA protein reduced cell adhesion of FHA-positive bacteria. Biochemical assays showed that this putative protein exhibited a dose-dependent binding affinity to heparan sulfate, indicating its adhesin activity. Moreover, ST-4526 showed increased antibiotic-resistance (nalidixic acid and fluoroquinolones) and a reduced ability for DNA uptake. Taken together, our data suggested that these combined features contributed to the clonal thriving of ST-4526 in Japan.  相似文献   

7.
Poultry isolates of Campylobacter jejuni derived from a survey of meat processing batches were genotyped by pulsed-field gel electrophoresis (PFGE) of chromosomal DNA to establish the clonal relationships between single-colony isolates. In the majority of batches studied, one or two genotype patterns predominated. However, in one batch (batch A), 21 single-colony isolates gave 14 different PFGE genotypes. The banding patterns obtained with SmaI were sufficiently different to distinguish between genotypes, although the patterns also produced many common bands. The question of whether these isolates represented different clones or had a common clonal ancestry was addressed by additional genotypic and phenotypic methods. Restriction length polymorphism of PCR products obtained from the flagellin genes showed an identical flagellin genotype for all of these isolates. In contrast, unrelated control isolates resulted in different flagellin genotypes. Moreover, all 14 different PFGE genotypes of batch A had identical Penner serotypes and identical or similar biotypes and phage types. It was concluded that the isolates were of clonal origin and that the diversity in the PFGE banding patterns had most likely originated from genomic rearrangements. However, the PFGE genotypes were shown to be stable upon subculturing in vitro and after in vivo passage in chickens, and natural transformation between isogenic mutants carrying antibiotic markers did not occur in vivo in a chick colonization model. The possible mechanisms for the hypothesized genomic recombinations and the conditions that allow, induce, or select for such events are discussed.  相似文献   

8.
Rapid molecular strain typing is critical for effective outbreak investigation and implementation of infection control measures. Pulsed-field gel electrophoresis is a highly discriminatory technique for Campylobacter jejuni, but generally requires 3-5 days. We describe a simplified protocol for pulsed-field gel electrophoresis that provides high quality typing of C. jejuni isolates in a single day.  相似文献   

9.
When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39°C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss of viability was preceded by sublethal injury, which was seen as a loss of the ability to grow on media containing 0.1% sodium deoxycholate or 1% sodium chloride. Resistance of cells to mild heat stress (50°C) or aeration was greatest in exponential phase and declined during early stationary phase. These results show that C. jejuni does not mount the normal phenotypic stationary-phase response which results in enhanced stress resistance. This conclusion is consistent with the absence of rpoS homologues in the recently reported genome sequence of this species and their probable absence from strain NCTC 11351. During prolonged incubation of C. jejuni NCTC 11351 in stationary phase, an unusual pattern of decreasing and increasing heat resistance was observed that coincided with fluctuations in the viable count. During stationary phase of Campylobacter coli UA585, nonmotile variants and those with impaired ability to form coccoid cells were isolated at high frequency. Taken together, these observations suggest that stationary-phase cultures of campylobacters are dynamic populations and that this may be a strategy to promote survival in at least some strains. Investigation of two spontaneously arising variants (NM3 and SC4) of C. coli UA585 showed that a reduced ability to form coccoid cells did not affect survival under nongrowth conditions.  相似文献   

10.
AIMS: The transfer of tetO gene conferring resistance to tetracycline was studied between Campylobacter jejuni strains, in the digestive tract of chickens. METHODS AND RESULTS: In vitro conjugation experiments were first performed in order to select donor/recipient couples for further in vivo assay. Then, chickens were inoculated with a donor/recipient couple of C. jejuni strains displaying spontaneous in vitro tetracycline resistance gene transfer. The donor was a tetracycline-resistant ampicillin-susceptible strain, and the recipient was a tetracycline-susceptible ampicillin-resistant strain. Chicken droppings were streaked on antimicrobial selective media and bi-resistant Campylobacter isolates were further characterized according to their donor or recipient flaA gene RFLP profile. The acquisition of tetracycline-resistance gene by the recipient C. jejuni strain from the donor C. jejuni strain was confirmed by tetO PCR. CONCLUSIONS: The study showed that transfer of tetO gene occurs rapidly and without antimicrobial selection pressure between C. jejuni strains in the digestive tract of chickens. SIGNIFICANCE AND IMPACT OF THE STUDY: The rapid and spontaneous transfer of tetO gene may explain the high prevalence of tetracycline resistance in chicken Campylobacter strains.  相似文献   

11.
A comparison of Campylobacter jejuni VPI strain H840 (ATCC 29428), which can grow at O2 levels up to 15%, with variant strain MC711-01 (which can grow at O2 levels up to 21-26%) indicated that the specific activity of catalase in crude cell extracts was higher in the variant by a factor of 1.6 to 2.5, depending on cultural conditions. Smaller differences occurred with superoxide dismutase activity, while peroxidase activities were invariably lower in the variant strain. The variant strain was much more resistant than the wild type to the bactericidal effects of H2O2. The results suggest that catalase activity might be one of the factors associated with the greater tolerance of O2 by the variant strain. However, both strains became more susceptible to H2O2 when cultures were initially grown at 6% O2 and then shifted to 21% O2; thus the role of catalase in the oxygen tolerance of C. jejuni is probably minor.  相似文献   

12.
Microbial cell surface glycans in the form of glycolipids and glycoproteins frequently play important roles in cell-cell interaction and host immune responses. Given the likely importance of these surface structures in the survival and pathogenesis of Campylobacter jejuni, a concerted effort has been made to characterise these determinants genetically and structurally since the genome was sequenced in 2000. We review the considerable progress made in characterising the Campylobacter glycome including the lipooligosaccharide (LOS), the capsule and O- and N-linked protein glycosylation systems, and speculate on the roles played by glycan surface structures in the life-cycle of C. jejuni.  相似文献   

13.
Aim:  To determine the effect of stand-off pad (SOP) use on the prevalence and strain diversity of Campylobacter jejuni in a small herd of dairy cows.
Methods and Results:  Faecal samples were collected from 21 cows on four sampling occasions (events), one in each season, over 1 year. The cows usually grazed on pasture but during winter they spent 18 h a day on a SOP. Campylobacter prevalence ranged from 48–52% on pasture but was 62% on the SOP. The diversity of 386 C. jejuni isolates was determined using Enterobacterial Repetitive Intergenic Consensus polymerase chain reaction (ERIC/PCR). There were 11 ERIC types identified for the herd over the course of the study. Of those 11, four to seven (per event) were present when the cows were grazing pasture but only two during SOP use.
Conclusions:  The use of the SOP was associated with an increase in prevalence and a reduction in diversity of C. jejuni.
Significance and Impact of the Study:  The reduction in ERIC types on the SOP indicated an increase in transfer of only some strains of C. jejuni among the cows. One of these strains persisted throughout the study. The zoonotic potential of this strain warrants further investigation.  相似文献   

14.
The global significance of Campylobacter jejuni and Campylobacter coli as gastrointestinal human pathogens has motivated numerous studies to characterize their population biology and evolution. These bacteria are a common component of the intestinal microbiota of numerous bird and mammal species and cause disease in humans, typically via consumption of contaminated meat products, especially poultry meat. Sequence-based molecular typing methods, such as multilocus sequence typing (MLST) and whole genome sequencing (WGS), have been instructive for understanding the epidemiology and evolution of these bacteria and how phenotypic variation relates to the high degree of genetic structuring in C. coli and C. jejuni populations. Here, we describe aspects of the relatively short history of coevolution between humans and pathogenic Campylobacter, by reviewing research investigating how mutation and lateral or horizontal gene transfer (LGT or HGT, respectively) interact to create the observed population structure. These genetic changes occur in a complex fitness landscape with divergent ecologies, including multiple host species, which can lead to rapid adaptation, for example, through frame-shift mutations that alter gene expression or the acquisition of novel genetic elements by HGT. Recombination is a particularly strong evolutionary force in Campylobacter, leading to the emergence of new lineages and even large-scale genome-wide interspecies introgression between C. jejuni and C. coli. The increasing availability of large genome datasets is enhancing understanding of Campylobacter evolution through the application of methods, such as genome-wide association studies, but MLST-derived clonal complex designations remain a useful method for describing population structure.Campylobacter jejuni and Campylobacter coli remain among the most common causes of human bacterial gastroenteritis worldwide (Friedman et al. 2000). In high-income countries, Campylobacteriosis is much more common than gastroenteritis caused by Escherichia coli, Listeria, and Salmonella, and accounts for an estimated 2.5 million annual cases of gastrointestinal disease in the United States alone (Kessel et al. 2001). Infection with these bacteria is also a major cause of morbidity and mortality in low- and middle-income countries, although it is almost certainly underreported in these settings, especially as culture confirmation remains challenging. Poor understanding of the transmission of these food-borne pathogens to humans in all income settings has contributed to the failure of public health systems to adequately address this problem. As a consequence, over the past 20 years, much investment has been directed at understanding how these bacteria are transmitted from reservoir hosts to humans through the food chain.Although the disease was first recognized by Theodor Escherich in 1886, who described the symptoms of intestinal Campylobacter infections in children as “cholera infantum” (Samie et al. 2007) or “summer complaint” (Condran and Murphy 2008), difficulties in the culture and characterization of these organisms precluded their recognition as major causes of disease until the 1970s. Campylobacteriosis is usually nonfatal and self-limiting; however, the symptoms of diarrhea, fever, abdominal pain, and nausea can be severe (Allos 2001), and sequelae, including Guillain–Barre syndrome and reactive arthritis, can have serious long-term consequences. Subsequently, recognition of the very high disease burden of human Campylobacter infection stimulated research on these bacteria and their relatives. Since the 1970s, C. coli and C. jejuni have been isolated from a wide range of wild and domesticated bird and mammal species, in which, typically, they are thought to cause few if any disease symptoms. Humans are usually infected by the consumption of contaminated food (especially poultry meat), water, milk, or contact with animals or animal feces (Niemann et al. 2003).Most of what is known about these species comes from isolates obtained from humans with disease, the food chain, and the agricultural environment. It is, however, important to note that such isolates are by no means representative of natural Campylobacter populations, and it is becoming increasingly apparent that much of the diversity present among the Campylobacters is in strains that colonize wild animals. Increasing numbers of novel genotypes are being found as Campylobacter populations are analyzed in different animal species, especially wild birds (Carter et al. 2009; French et al. 2009); these populations undoubtedly contain many as-yet-undescribed lineages. Most human disease isolates from cases of gastroenteritis in countries, such as the United Kingdom and the United States, are C. jejuni, which typically accounts for 90% of cases in these settings, with the remaining ∼10% of cases mostly caused by C. coli. The majority of the genotypes isolated from human disease have also been isolated as commensal gastrointestinal inhabitants of domesticated and, especially, food animals. Furthermore, clinical isolates are a nonrandom subset of these strains. Asymptomatic carriage of C. jejuni and C. coli is thought to be rare in humans, especially among people in industrialized countries, suggesting that humans are not a primary host for these organisms in these settings and that people are sporadically, and frequently pathologically, infected via the food chain from animal reservoir hosts.An understanding of the relatively short history of coevolution between humans and pathogenic Campylobacters can be obtained by examining their population structure and ecology. This approach has formed the basis of many recent investigations of the cryptic epidemiology of these organisms (Lang et al. 2010; Müllner et al. 2010; Thakur et al. 2010; Hastings et al. 2011; Jorgensen et al. 2011; Kittl et al. 2011; Magnússon et al. 2011; Sheppard et al. 2011a,b; Sproston et al. 2011; Read et al. 2013) and will be the focus of this review. Such studies have included molecular epidemiological and evolutionary analyses and, in the past 15 years or so, the application of high-throughput DNA sequencing technologies of increasing capacity has enhanced the integration of these two areas of investigation to their mutual benefit.  相似文献   

15.
AIMS: DuPont Qualicon recently developed a new PCR assay for the identification of Campylobacter jejuni and Campylobacter coli. We evaluated the selectivity and utility of this assay compared with a PCR method already in use in our laboratory. METHODS AND RESULTS: A group of 133 Campylobacter isolates from poultry carcass rinse samples were screened using the commercial PCR and standard PCR. Identical results were found for 89.5% (119/133) of the isolates. However, 10.5% (14/133) gave conflicting results suggesting mixed cultures. These 14 strains were retested by both PCR methods. Of these, 78.6% (11/14) showed identical results for both PCR methods after retesting; the results for the remaining 21.4% (3/14) again indicated mixed cultures. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF STUDY: The new multiplex PCR is a rapid and accurate alternative to more conventional PCR methods. The persistence of mixed Campylobacter cultures noted in this study suggests certain strains may be very difficult to isolate clonally by standard culture methods.  相似文献   

16.
We showed by a laboratory experiment that four different Campylobacter jejuni strains are able to infect the protozoan Acanthamoeba polyphaga. C. jejuni cells survived for longer periods when cocultured with amoebae than when grown in culture alone. The infecting C. jejuni cells aggregated in amoebic vacuoles, in which they were seen to be actively moving. Furthermore, a resuscitation of bacterial cultures that were previously negative in culturability tests was observed after reinoculation into fresh amoeba cultures. After spontaneous rupture of the amoebae, C. jejuni could be detected by microscopy and culturability tests. Our results indicate that amoebae may serve as a nonvertebrate reservoir for C. jejuni in the environment.  相似文献   

17.
Campylobacter jejuni is a major human enteric pathogen that displays genetic variability via genomic reorganization and phase variation. This variability can adversely affect the outcomes and reproducibility of experiments. C. jejuni strain 81116 (NCTC11828) has been suggested to be a genetically stable strain (G. Manning, B. Duim, T. Wassenaar, J. A. Wagenaar, A. Ridley, and D. G. Newell, Appl. Environ. Microbiol. 67:1185-1189, 2001), is amenable to genetic manipulation, and is infective for chickens. Here we report the finished annotated genome sequence of C. jejuni strain 81116.  相似文献   

18.
We showed by a laboratory experiment that four different Campylobacter jejuni strains are able to infect the protozoan Acanthamoeba polyphaga. C. jejuni cells survived for longer periods when cocultured with amoebae than when grown in culture alone. The infecting C. jejuni cells aggregated in amoebic vacuoles, in which they were seen to be actively moving. Furthermore, a resuscitation of bacterial cultures that were previously negative in culturability tests was observed after reinoculation into fresh amoeba cultures. After spontaneous rupture of the amoebae, C. jejuni could be detected by microscopy and culturability tests. Our results indicate that amoebae may serve as a nonvertebrate reservoir for C. jejuni in the environment.  相似文献   

19.
Aims: To determine the effect of various enrofloxacin dose regimes on the colonization and selection of resistance in Campylobacter jejuni strain 81116P in experimentally colonized chickens. Methods and Results: Two experiments were undertaken, in which 14‐day‐old chickens were colonized with 1 × 107–1 × 109 CFU g?1Camp. jejuni strain 81116P and then treated with enrofloxacin at 12–500 ppm in drinking water for various times. Caecal colonization levels were determined at various time‐points after start‐of‐treatment, and the susceptibility of recovered isolates to ciprofloxacin was monitored. Resistance was indicated by growth on agar containing 4 μg ml?1 ciprofloxacin, MICs of 16 μg ml?1 and the Thr86Ile mutation in gyrA. Enrofloxacin at doses of 12–250 ppm reduced Camp. jejuni colonization over the first 48–72 h after start‐of‐treatment. The degree of reduction in colonization was dose, but not treatment time, dependent. In all cases, maximal colonization was re‐established within 4–6 days. Fluoroquinolone‐resistant organisms were recoverable within 48 h of start‐of‐treatment; after a further 24 h all recovered isolates were resistant. In contrast, a dose of 500 ppm enrofloxacin reduced colonization to undetectable levels within 48 h, and the treated birds remained Campylobacter negative throughout the remaining experimental period. By high pressure liquid chromatography, for all doses, the maximum concentrations of enrofloxacin and ciprofloxacin in the caecal contents were detected at the point of treatment completion. Thereafter, levels declined to undetectable by 7 days post‐treatment withdrawal. Conclusions: In a model using chickens maximally colonized with Camp. jejuni 81116P, treatment with enrofloxacin, at doses of 12–250 ppm in drinking water, enables the selection, and clonal expansion, of fluoroquinolone‐resistant organisms. However, this is preventable by treatment with 500 ppm of enrofloxacin. Significance and impact of the study: Treatment of chickens with enrofloxacin selects for resistance in Camp. jejuni in highly pre‐colonized birds. However, a dose of 500 ppm enrofloxacin prevented the selection of resistant campylobacters.  相似文献   

20.
Through the national surveillance program for Campylobacter spp., nine broiler chicken farms that were infected with Campylobacter jejuni in at least five rotations in 1998 were identified. One additional farm, located at the island of Bornholm where divided slaughter is used extensively, was also selected. Twelve broiler houses located on 10 farms were included in the study. The C. jejuni isolates collected from the selected houses during the surveillance were typed using fla typing and macrorestriction profiling (MRP), and a subset of the isolates, representing each of the identified clones, was serotyped according to the Penner scheme. Pulsed-field gel electrophoresis typing using SmaI and KpnI revealed that the majority of houses (11 of 12) carried identical isolates in two or more broiler flocks. Such persistent clones were found in 63% of all flocks (47 of 75). The majority of persistent clones (7 of 13) had fla type 1/1, but MRPs distinguished between isolates from different houses, and fla type 1/1 clones belonged to different serotypes. Seven houses carried persistent clones that covered an interval of at least four broiler flock rotations, or at least one half year. The dominant fla type (1/1) was represented by 44% of isolates, or by at least one isolate from 31 of 62 broiler flocks. This significantly exceeded the prevalence of fla type 1/1 C. jejuni isolates that we have estimated from other studies and suggests that isolates carrying this fla type are overrepresented in flocks with recurrent Campylobacter problems. The MRPs of clones belonging to fla type 1/1 serotype O:2 isolated from persistently infected flocks shared a high percentage of bands compared to the remaining isolates, indicating that some clones that have the ability to cause persistent infections in broiler farms are highly related to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号