首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Many lines of evidence have suggested that oxidative stress and inflammation play a pivotal role in the toxicity of nickel salts. Considering that neutrophils are active participants in inflammatory processes, namely by producing high amounts of reactive oxygen species, the aim of the present study was to evaluate the putative activation of human neutrophils’ oxidative burst by nickel. Subsequently, the influence of nickel in the pathways leading to NADPH oxidation in neutrophils was evaluated by measuring protein kinase C (PKC) activation. The effects of nickel on neutrophils’ nuclear factor κB (NF-κB) activation and on the production of the proinflammatory mediators interleukin (IL)-1β, IL-6, IL-8 and tumour necrosis factor α were also evaluated. The results obtained showed that nickel, at concentrations that may be attained in vivo, stimulates the production of superoxide radical (O2 ·−), hydrogen peroxide (H2O2), and hypochlorous acid (HOCl) in human neutrophils in vitro, via activation of PKC. In addition, nickel was shown to activate NF-κB and to induce the production of IL-8 in these cells. These observations indicate that the sustained activation of human neutrophils by nickel may contribute for the long-term adverse effects on human health mediated by this metal.  相似文献   

4.

Objectives

To identify the protective effect of DJ-1 protein against oxidative stress-induced HepG2 cell death, we used cell-permeable wild type (WT) and a mutant (C106A Tat-DJ-1) protein.

Results

By using western blotting and fluorescence microscopy, we observed WT and C106A Tat-DJ-1 proteins were efficiently transduced into HepG2 cells. Transduced WT Tat-DJ-1 proteins increased cell survival and protected against DNA fragmentation and intracellular ROS generation levels in H2O2-exposed HepG2 cells. At the same time, transduced WT Tat-DJ-1 protein significantly inhibited NF-κB and MAPK (JNK and p38) activation as well as regulated the Bcl-2 and Bax expression levels. However, C106A Tat-DJ-1 protein did not show any protective effect against cell death responses in H2O2-exposed HepG2 cells.

Conclusions

Oxidative stress-induced HepG2 cell death was significantly reduced by transduced WT Tat-DJ-1 protein, not by C106A Tat-DJ-1 protein. Thus, transduction of WT Tat-DJ-1 protein could be a novel strategy for promoting cell survival in situations of oxidative stress-induced HepG2 cell death.
  相似文献   

5.
Liu  Xiaomei  Yi  Mingji  Jin  Rong  Feng  Xueying  Ma  Liang  Wang  Yanxia  Shan  Yanchun  Yang  Zhaochuan  Zhao  Baochun 《Molecular biology reports》2020,47(5):3735-3744
Molecular Biology Reports - In this study, a mice model of obesity-asthma was established. We investigated the correlation between oxidative stress and NF-κB signaling pathway in the lung...  相似文献   

6.
Kumar A  Negi G  Sharma SS 《Biochimie》2012,94(5):1158-1165
Inflammation is an emerging patho-mechanism of diabetes and its complications. NF-κB pathway is one of the central machinery initiating and propagating inflammatory responses. The present study envisaged the involvement of NF-κB inflammatory cascade in the pathophysiology of diabetic neuropathy using BAY 11-7082, an IκB phosphorylation inhibitor. Streptozotocin was used to induce diabetes in Sprauge Dawley rats. BAY 11-7082 (1 &; 3 mg/kg) was administered to diabetic rats for 14 days starting from the end of six weeks post diabetic induction. Diabetic rats developed deficits in nerve functions and altered nociceptive parameters and also showed elevated expression of NF-κB (p65), IκB and p-IκB along with increased levels of IL-6 &; TNF-α and inducible enzymes (COX-2 and iNOS). Furthermore, there was an increase in oxidative stress and decrease in Nrf2/HO-1 expression. We observed that BAY 11-7082 alleviated abnormal sensory responses and deficits in nerve functions. BAY 11-7082 also ameliorated the increase in expression of NF-κB, IκB and p-IκB. BAY 11-7082 curbed down the levels of IL-6, TNF-α, COX-2 and iNOS in the sciatic nerve. Lowering of lipid peroxidation and improvement in GSH levels was also seen along with increased expression of Nrf2/HO-1. Thus it can be concluded that NF-κB expression and downstream expression of proinflammatory mediators are prominent features of nerve damage leading to inflammation and oxidative stress and BAY 11-7082 was able to ameliorate experimental diabetic neuropathy by modulating neuroinflammation and improving antioxidant defence.  相似文献   

7.
Exposure of an organism to stress, results in oxidative stress and increased nitric oxide (NO) production in the brain. The role of the processes caused by chronic stress in the prefrontal cortex has not been fully investigated. Considering that chronic stress increases NO production by the enzyme nitric oxide synthase (NOS), we examined the cytosolic neuronal (nNOS) or inducible (iNOS) protein levels in the prefrontal cortex of rats exposed to 21 d of chronic social isolation stress, an animal model of depression, alone or in combination with 2 h of acute immobilization or cold (4 °C) stress (combined stress). Antioxidative status via cytosolic CuZnSOD and mitochondrial MnSOD activity, cytosolic redox status via reduced glutathione (GSH) concentration were determined. Furthermore, cytosolic inducible heat shock protein 70 (Hsp70i), cytosolic/nuclear distributions of NF-κB and serum corticosterone (CORT) were also investigated to elucidate the possible mechanism involved in the cellular NOS pathway. Our results showed that both acute stressors led to increases of CORT and nNOS protein while iNOS protein expression was unaffected. In contrast to the acute stress, chronic social isolation compromised hypothalamic–pituitary-adrenal axis functioning such that the normal stress response was impaired following subsequent acute stressors. Downregulated redox GSH status as well as decreased activity of CuZnSOD and MnSOD suggests the existence of oxidative stress which remained as such following combined stressors. Changes in redox-status associated with decreased Hsp70i protein expression enabled NF-κB translocation into the nucleus, causing increased cytosolic nNOS and iNOS protein expression. Results suggest that NOS signaling pathway plays a differential role between acute and chronic stress whereby state of oxidative/nitrosative stress after chronic social isolation is caused, at least in part, by NF-κB activation and increased iNOS protein expression.  相似文献   

8.

Objectives

To investigate the functional roles of bone marrow stromal cell antigen 2 (BST2) in gastric cancer (GC) cells and its implications in the development of GC patients.

Results

BST2 was frequently overexpressed in GC tissues compared with the adjacent non-tumorous tissues, and high BST2 expression was correlated with tumor stage and lymphatic metastasis. Furthermore, in vitro experiments demonstrated that knockdown of BST2 by siRNA inhibited cell proliferation, induced apoptosis and repressed cell motility in GC cells. In addition, the pro-tumor function of BST2 in GC was mediated partly through the NF-κB signaling.

Conclusion

BST2 possesses the oncogenic potential in GC by regulating the proliferation, apoptosis, and migratory ability of GC cells, thereby BST2 could be a potential therapeutic target for the treatment of GC.
  相似文献   

9.
10.
11.
12.
13.
This study aimed to investigate the potential beneficial effect of an antioxidant lignan, Schisandrin B (Sch B), against cisplatin (cDDP) induced oxidative stress mediated geno- and neuro-toxicities. A dose of 10 mg/kg cDDP induced considerable genotoxicity in mice, and Sch B treatment attenuated the cDDP-induced DNA damage as assessed by the comet assay in the brain. The frequency of micro-nucleated erythrocyte production in bone marrow was also significantly reduced by Sch B treatment in cDDP-treated mice. In neurobehavioral studies, Sch B significantly prevented the memory deficits induced by cDDP, and had an anxiolytic effect in the elevated plus maze task. Sch B treatment significantly attenuated lipid peroxidation, acetylcholinesterase activity and nitrite levels induced by cDDP. Furthermore, Sch B effectively inhibited NF-κB and p53 activation, and cleaved caspase-3 expression in cDDP-treated mice. Hence, Sch B with potent antioxidant and neuro-protective property with no mutagenic activity would be beneficial complementary food factor against cDDP induced oxidative stress.  相似文献   

14.
Endothelial barrier breakdown contributes to organ failure in sepsis. The key mechanism by which the potent sepsis inductor lipopolysaccharide (LPS) disrupts the endothelial barrier is controversial. Here, we tested the hypothesis that NF-κB activation is critically involved in endothelial barrier breakdown. Application of LPS to monolayers of porcine pulmonary artery endothelial cells (PAEC) and human dermal microvascular endothelial cells (HDMEC) induced a rapid and sustained activation of NF-κB as revealed by translocation of its subunit p65 into the nuclei in nuclear extraction assays and by immunostaining. Measurements of transendothelial electrical resistance (TER) and intercellular gap formation demonstrated significant breakdown of endothelial barrier properties following LPS treatment for 3?h. Interestingly, monolayers recovered spontaneously beginning after 10?h. Increased cAMP prevented LPS-induced loss of endothelial barrier properties, but did not block NF-κB activation. Application of the cell-permeable NEMO-binding domain (NBD) synthetic peptide was effective to prevent NF-κB activation, but did neither block LPS-induced loss of TER nor intercellular gap formation. NBD peptide alone did not alter endothelial barrier properties, but enhanced the barrier-compromising effects when applied in combination with LPS. Similarly, siRNA-mediated knock-down of p65 in HDMECs did not prevent LPS-induced barrier breakdown. Known targets of NF-κB-derived protein expression of caveolin or vasodilator-stimulated phosphoprotein (VASP) remained unaltered by LPS treatment of endothelial cells. In summary, our data indicate that NF-κB activation by LPS is not critically involved in disruption of endothelial barrier properties. Rather, our data suggest that NF-κB activation acts as a part of a rescue mechanism.  相似文献   

15.
16.

Aims

Elevated plasma free fatty acids impair the insulin signaling by induction of the expression of protein phosphatases. However, the effect of palmitate on SH2-containing inositol 5′-phosphatase 2 (SHIP2) expression has not been investigated. Here we investigated the effects of palmitate on SHIP2 expression and elucidated the underlying mechanisms in skeletal muscle cells.

Main methods

SHIP2 mRNA and protein levels were measured in C2C12 myotubes exposed to palmitate. Specific inhibitors were used to identify the signaling pathways involved in SHIP2 expression.

Key findings

The results showed that 0.5 mM palmitate significantly upregulates the mRNA and protein levels of SHIP2 in C2C12 cells. To address the role of palmitate intracellular metabolites in SHIP2 expression, the myotubes were treated with palmitate in the presence of ceramide and diacylglycerol synthesis inhibitors. The results demonstrated that only ceramide synthesis inhibition could prevent palmitate-induced SHIP2 expression in these cells. In addition, the incubation of muscle cells with different concentrations of C2-ceramide dose-dependently enhanced SHIP2 expression. Furthermore, the inhibition of both JNK and NF-κB pathways could prevent ceramide-induced SHIP2 expression in myotubes.

Significance

These findings suggest that palmitate contributes to SHIP2 overexpression in skeletal muscle via the mechanisms involving the activation of ceramide-JNK and NF-κB pathways.  相似文献   

17.
18.
19.
Human T-cell leukemia virus type 1 (HTLV-1), the first human retrovirus discovered, is the etiological agent of adult-T-cell leukemia/lymphoma. The HTLV-1 encoded Tax protein is a potent oncoprotein that deregulates gene expression by constitutively activating nuclear factor-κB (NF-κB). Tax activation of NF-κB is critical for the immortalization and survival of HTLV-1-infected T cells. In this review, we summarize the present knowledge on mechanisms underlying Tax-mediated NF-κB activation, with an emphasis on post-translational modifications of Tax.  相似文献   

20.
Rugulactone and its analogues were synthesized following Horners–Wadsworth–Emmons and ring-closing metathesis as the key reactions. A library of new rugulactone analogues were designed, synthesized and evaluated for their anticancer activity in breast cancer cells. All analogues have shown anti-proliferative activity, while some of them exhibited significant cytotoxicity. In assays related to cell-cycle distribution, these conjugates induced G1 cell-cycle arrest in MDA-MB-231 cells. The cell cycle arrest nature was further confirmed by examining the effect on Cyclin E and Cdk2 proteins that acts at G1-S phase transition. Immunocytochemistry assay revealed that these compounds inhibited nuclear translocation of NF-κB protein, thereby activation of NF-κB was inhibited. The expression of NF-κB target genes such as Cyclin D1 and Bcl-xL were severely affected. Apart from acting on NF-κB, these compounds also regulate class I Histone deacetylase proteins such as (HDAC-3 and 8) that have a crucial and regulatory role in cell-proliferation. Simultaneously, the apoptotic inducing nature of these compounds was confirmed by activation of PARP protein, a protein that plays a key role in DNA damage and repair pathways. Among all compounds of this series 3g is the most potent compound and can be used for further studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号