首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activation of bovine prothrombin was studied with highly purified clotting factors and using a coagulation assay developed to look at the initial rate of prothrombin conversion as well as the conversion rate over a time course of 75 min. Activation of prothrombin by factor Xa alone was slow. The rate of prothrombin conversion increased markedly with the addition of each of the accessory components Ca2+, phospholipid and bovine factor V, respectively. With the complete prothrombinase complex comprising factor Xa, Ca2+, phospholipid and factor V, the rate increase was about 22,000-fold higher compared to the action of factor Xa and Ca2+ on prothrombin alone. The rates of thrombin formation obtained with activated factor X1 were only about 70% the values obtained with factor X2. The rate of prothrombin activation and the difference between the activities of the activated factors X1 and X2 are discussed.  相似文献   

2.
Factor X is a critical enzyme in the blood coagulation cascade, however, in recent years the coagulation zymogen factor X has received additional interest as a selective proteinase to allow production of functional eukaryotic proteins in a prokaryotic expression system. Traditional factor X purification schemes suffer from low yields, low capacity, lengthy dialysis steps, and contamination by the autoproteolytic activated enzyme factor Xa. By incorporating a reversible inhibitor of factor X activation, we were able to recover 67% of the factor X present without any detectable activated enzyme. Six liters of plasma could be processed onto a 50 mL phenylalanine-Sepharose hydrophobic chromatography column without saturating the matrix. The final product is devoid of detectable proteolytic activity. At time of use, the zymogen is specifically activated with a Sepharose-bound activating enzyme isolated from Russell's Viper Venom, resulting in factor Xa free of other detectable proteinases.  相似文献   

3.
T Nakagaki  D C Foster  K L Berkner  W Kisiel 《Biochemistry》1991,30(45):10819-10824
Previous studies demonstrated proteolytic activation of human blood coagulation factor VII by an unidentified protease following complex formation with tissue factor expressed on the surface of a human bladder carcinoma cell line (J82). In the present study, an active-site mutant human factor VII cDNA (Ser344----Ala) has been constructed, subcloned, and expressed in baby hamster kidney cells. Mutant factor VII was purified to homogeneity in a single step from serum-free culture supernatants by immunoaffinity column chromatography. Mutant factor VII was fully carboxylated, possessed no apparent clotting activity, and was indistinguishable from plasma factor VII by SDS-PAGE. Cell binding studies indicated that mutant factor VII bound to J82 tissue factor with essentially the same affinity as plasma factor VII and was cleaved by factor Xa at the same rate as plasma factor VII. In contrast to radiolabeled single-chain plasma factor VII that was progressively converted to two-chain factor VIIa on J82 monolayers, mutant factor VII was not cleaved following complex formation with J82 tissue factor. Incubation of radiolabeled mutant factor VII with J82 cells in the presence of recombinant factor VIIa resulted in the time-dependent and tissue factor dependent conversion of single-chain mutant factor VII to two-chain mutant factor VIIa. Plasma levels of antithrombin III had no discernible effect on the factor VIIa catalyzed activation of factor VII on J82 cell-surface tissue factor but completely blocked this reaction catalyzed by factor Xa. These results are consistent with an autocatalytic mechanism of factor VII activation following complex formation with cell-surface tissue factor, which may play an important role in the initiation of extrinsic coagulation in normal hemostasis.  相似文献   

4.
The activation of human coagulation factor IX by human tissue factor.factor VIIa.PCPS.Ca2+ (TF.VIIa.PCPS.Ca2+) and factor Xa.PCPS.Ca2+ enzyme complexes was investigated. Reactions were performed in a highly purified system consisting of isolated human plasma proteins and recombinant human tissue factor with synthetic phospholipid vesicles (PCPS: 75% phosphatidylcholine (PC), 25% phosphatidylserine (PS)). Factor IX activation was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, [3H]factor IX activation peptide assay, colorimetric substrate thiobenzyl benzyloxycarbonyl-L-lysinate (Z-Lys-SBzl) hydrolysis, and specific incorporation of a fluorescent peptidyl chloromethyl ketone. Factor IX activation by the TF.VIIa.PCPS.Ca2+ enzyme complex was observed to proceed through the obligate non-enzymatic intermediate species factor IX alpha. The simultaneous activation of human coagulation factors IX and X by the TF.VIIa.PCPS.Ca2+ enzyme complex were investigated. When factors IX and X were presented to the TF.VIIa complex, at equal concentrations, it was observed that the rate of factor IX activation remained unchanged while the rate of factor X activation slowed by 45%. When the proteolytic cleavage products of this reaction were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it was observed that the intermediate species factor IX alpha was generated more rapidly when factor X was present in the reaction mixture. When factor IX was treated with factor Xa.PCPS in the presence of Ca2+, it was observed that factor IX was rapidly converted to factor IX alpha. The activation of factor IX alpha by the TF.VIIa.PCPS.Ca2+ complex was evaluated, and it was observed that factor IX alpha was activated more rapidly by the TF.VIIa.PCPS.Ca2+ complex than was factor IX itself. These data suggest that factors IX and X, when presented to the TF.VIIa.PCPS.Ca2+ enzyme complex, are both rapidly activated and that factor Xa, which is generated in the initial stages of the extrinsic pathway, participates in the first proteolytic step in the activation of factor IX, the generation of factor IX alpha.  相似文献   

5.
Tissue kallikrein and factor Xa were found to activate tissue plasminogen activator (t-PA) at a rate comparable with that of plasmin. During the activation reaction, the single-chain molecule was converted into a two-chain form. A slight t-PA activating activity was also found in plasma kallikrein. Other activated coagulation factors, factor XIIa, factor XIa, factor IXa, factor VIIa, thrombin and activated protein C had no effect on t-PA activation. t-PA was also activated by a tissue kallikrein-like enzyme that was isolated from the culture medium of melanoma cells. These results indicate that tissue kallikrein and factor Xa may participate in the extrinsic pathway of human fibrinolysis.  相似文献   

6.
Synthesis and secretion of blood coagulation factor X was studied during incubations of hepatocytes prepared by perfusion of rat livers with collagenase. The apparent molecular weight of factor X isolated from the incubation medium was about 14,000 less than factor X isolated from rat plasma. The extracellular form of factor X was a two-chain polypeptide and the observed difference in molecular weight was reflected in the heavy chain. Since these properties were more characteristic of factor Xa than factor X, experiments were designed to determine if factor X activation occurred during the incubations. Clotting factor assays indicated that factor X secreted by hepatocytes was present as factor Xa. Also, when purified plasma factor X was added to incubations of hepatocytes the added factor X was converted to factor Xa. Plasma membranes prepared from isolated hepatocytes or from liver homogenates contained an enzyme that converted factor X to factor Xa in a calcium-dependent reaction. The results suggest that the activity is due to the presence of thromboplastin (tissue factor) and factor VII in the membrane preparations.  相似文献   

7.
Endothelial cells react to factor Xa and thrombin by proinflammatory responses. It is unclear how these cells respond under physiological conditions, where the serine proteases factor VIIa, factor Xa and thrombin are all simultaneously generated, as in tissue factor-driven blood coagulation. We studied the Ca(2+) signaling and downstream release of interleukins (ILs), induced by these proteases in monolayers of human umbilical vein endothelial cells. In single cells, factor Xa, but not factor VIIa, complexed with tissue factor, evoked a greatly delayed, oscillatory Ca(2+) response, which relied on its catalytic activity and resembled that of SLIGRL, a peptide specifically activating the protease-activated receptor 2 (PAR2). Thrombin even at low concentrations evoked a rapid, mostly non-oscillating Ca(2+) response through activation of PAR1, which reinforced the factor Xa response. The additive Ca(2+) signals persisted, when factor X and prothrombin were activated in situ, or in the presence of plasma that was triggered to coagulate with tissue factor. Further, thrombin reinforced the factor Xa-induced production of IL-8, but not of IL-6. Both interleukins were produced in the presence of coagulating plasma. In conclusion, under coagulant conditions, factor Xa and thrombin appear to contribute in different and additive ways to the Ca(2+)-mobilizing and proinflammatory reactions of endothelial cells. These data provide first evidence that these serine proteases trigger distinct signaling modules in endothelium that is activated by plasma coagulation.  相似文献   

8.
The prothrombinase complex, which catalyzes the conversion of prothrombin to thrombin, consists of activated Factor X, Factor Va, a membrane surface and Ca2+. To examine the structures that support Factor Va binding to Factor X, we used in vitro mutagenesis to construct a chimeric molecule that includes regions of Factor IX and Factor X. This chimera (IXGla,E1XE2,SP) was prepared from cDNA encoding the second epidermal growth factor (EGF) and serine protease domains of Factor X linked downstream from the cDNA encoding the signal peptide, propeptide, Gla domain, and first EGF domain of Factor IX. The cDNAs encoding the Factor IX/X chimera and wild-type Factor X were each expressed in Chinese hamster ovary cells and the secreted proteins purified by affinity chromatography using polyclonal anti-Factor X antibodies. The chimera migrated as a single major band corresponding to a molecular weight of 68,000. By Western blotting, the chimeric protein stained with both polyclonal anti-Factor X and anti-Factor IX antibodies. gamma-Carboxyglutamic acid analysis demonstrated near complete carboxylation of both the wild-type Factor X and the Factor IX/X chimera. Compared with Factor X, the rate of zymogen activation of the Factor IX/X chimera was about 50% that of Factor X when activated by Factor IXa, Factor VIIIa, phospholipid, and Ca2+. The enzyme form of the Factor IX/X chimera, activated Factor IX/X, generated using the coagulant protein of Russell's viper venom, expressed full amidolytic activity compared with Factor Xa. The activated Factor IX/X chimera had about 14% of the activity of Factor Xa when employed in a prothrombinase assay; this activity reached 100% with increasing concentrations of Factor Va. A binding assay was employed to test the ability of the active site-inactivated Factor IX/Xa chimera to inhibit the binding of Factor Xa to the Factor Va-phospholipid complex, thus inhibiting the activation of prothrombin to thrombin. In this assay the active site-inactivated form of the chimera competed with Factor Xa completely but with decreased affinity for the Factor Va-phospholipid complex. These data indicate that the second EGF domain and the serine protease domain of Factor Xa are sufficient to interact with Factor Va. The Factor IX/X chimera is a good substrate for the tenase complex; the defective enzymatic activity of the activated Factor IX/X chimera can be accounted for by its decreased affinity for Factor Va relative to Factor Xa.  相似文献   

9.
1. Incubation of decarboxyfactor X with the factor X-activating enzyme from Russell's Viper venom revealed the generation of amidase activity towards Bz-Ile-Glu-Gly-Arg-pNA, but not of activity in blood coagulation. 2. The rate of activation of both factor X and decarboxyfactor X depends on the ability of the zymogens to bind Ca2+. The relationship between Ca2+ concentration and velocity of the activation reaction is sigmoid in the case of factor X, but hyperbolic with decarboxyfactor X. 3. Activated decarboxyfactor X was purified by powder column electrophoresis. 4. Identical changes of primary structure accompanied the activation of factor X and decarboxyfactor X. Identical molecular weight and common antigenic determinants were found in factor Xa and decarboxyfactor Xa. The amino acid composition was identical except for 12 glutamic acid residues in decarboxyfactor Xa and gamma-carboxyglutamic acid residues in factor Xa. 5. Unlike factor X, activated factor X has a very low electrophoretic mobility in the presence of Ca2+ at pH 8.6. This is probably due to self association of factor Xa under the influence of Ca2+. The electrophoretic mobility of activated decarboxyfactor X is only slightly decreased compared to decarboxyfactor X in the presence of Ca2+.  相似文献   

10.
Prothrombin is converted to thrombin by factor Xa in the cell-associated prothrombinase complex. Prothrombin is present in calcified bone matrix and thrombin exerts effects on osteoblasts as well as on bone resorption by osteoclasts.We investigated whether (1) osteoclasts display factor Xa-dependent prothrombinase activity and (2) osteoclasts express critical regulatory components upstream of the prothrombinase complex.The osteoclast differentiation factor RANKL induced formation of multinucleated TRAP positive cells concomitant with induction of prothrombinase activity in cultures of RAW 264.7 cells and bone marrow osteoclast progenitors.Expression analysis of extrinsic coagulation factors revealed that RANKL enhanced protein levels of factor Xa as well as of coagulation factor III (tissue factor). Inhibition assays indicated that factor Xa and tissue factor were involved in the control of prothrombinase activity in RANKL-differentiated osteoclasts, presumably at two stages (1) conversion of prothrombin to thrombin and (2) conversion of factor X to factor Xa, respectively.Activation of the extrinsic coagulation pathway during osteoclast differentiation through induction of tissue factor and factor Xa by a RANKL-dependent pathway indicates a novel role for osteoclasts in converting prothrombin to thrombin.  相似文献   

11.
The activation of human blood coagulation factor VII can occur by the feedback activity of either factor VIIa (autoactivation) or factor Xa. Both of these reactions are known to be enhanced by the presence of tissue factor, an integral membrane protein and the cofactor for factor VIIa. We examine here the activation of 125I-factor VII by both factor VIIa and factor Xa employing a mutant soluble form of tissue factor which has had its transmembrane and cytoplasmic domains deleted (sTF1-219). This mutant soluble tissue factor retains cofactor activity toward factor VIIa in a single-stage clotting assay but shows a strong dependence on initial plasma levels of factor VIIa (from 1 to 10,000 ng/ml) when compared to wild-type tissue factor. We show that this dependence is due to a deficiency of sTF1-219 in ability to both promote autoactivation and enhance the factor Xa-catalyzed activation of 125I-factor VII. sTF1-219 does not, however, inhibit the tissue factor-independent activation of 125I-factor VII by factor Xa. The results strongly suggest that the phospholipid anchoring region of tissue factor is essential for autoactivation and beneficial for factor Xa-catalyzed activation of 125I-factor VII. In addition, when taken together with the dependence of clotting times on initial factor VIIa levels observed with sTF1-219, these results indicate that factor VII autoactivation may be of greater importance in the initiation of blood coagulation via tissue factor than has been previously realized.  相似文献   

12.
Blood coagulation in vivo is a spatially nonuniform, multistage process: coagulation factors from plasma bind to tissue factor (TF)-expressing cells, become activated, dissociate, and diffuse into plasma to form enzymatic complexes on the membranes of activated platelets. We studied spatial regulation of coagulation using two approaches: 1), an in vitro experimental model of clot formation in a thin layer of plasma activated by a monolayer of TF-expressing cells; and 2), a computer simulation model. Clotting in factor VIII- and factor XI-deficient plasmas was initiated normally, but further clot elongation was impaired in factor VIII- and, at later stages, in factor XI-deficient plasma. The data indicated that clot elongation was regulated by factor Xa formation by intrinsic tenase, whereas factor IXa was formed by extrinsic tenase on activating cells and diffused into plasma, thus sustaining clot growth. Far from the activating cells, additional factor IXa was produced by factor XIa. Exogenously added TF had no effect on the clot growth rate, suggesting that plasma TF does not contribute significantly to the clot propagation process in a reaction-diffusion system without flow. Addition of thrombomodulin at 3-100 nM caused dose-dependent termination of clot elongation with a final clot size of 2-0.2 mm. These results identify roles of specific coagulation pathways at different stages of spatial clot formation (initiation, elongation, and termination) and provide a possible basis for their therapeutic targeting.  相似文献   

13.
The esterolytic and amidolytic properties of activated blood coagulation factor X (factor Xa) and the analogous decarboxy species were compared in order to find out if the gamma-carboxyglutamic acid residues influence the function of the active centre. It was found that the two proteins (1) showed similar kinetic parameters when titrated with p-nitrophenyl-p'-guanidinobenzoate hydrochloride (2) had a similar Km and kcat for various synthetic chromogenic tri- and tetrapeptides and (3) were inhibited in the same way by benzamidine. Further it was observed that (4) Ca2+ inactivates factor Xa, but has no influence on the amidase activity of decarbyxyfactor Xa (5) factor V prevents Ca2+-induced inactivation of factor Xa but does not influence the amidase activity of both factor Xa and decarboxyfactor Xa. We conclude that the interaction of the gamma-carboxyglutamic acid residues with Ca2+ in factor X has no measurable influence on the properties of the active site per se.  相似文献   

14.
Surface plasmon resonance is an important technique for studying molecular interactions and was used to investigate the molecular interaction of anticoagulant sulfated polysaccharides purified from an enzymatic hydrolysate of the brown alga Ecklonia cava (ECA) with blood coagulation factors. In a direct binding assay, binding affinity between ECA/antithrombin III (ATIII) and activated blood coagulation factors was in the order: factor VIIa (FVIIa) > factor Xa (FXa) > thrombin (FIIa); kinetic analysis determined K D values of ECA for FVIIa, FXa, and FIIa of 15.1, 45.0 and 65.0 nM, respectively. Therefore, ECA strongly and selectively (FVII, FX, and FII) enhanced ATIII-mediated coagulation factor inhibition in both the extrinsic and common coagulation pathways. This may contribute to its high anticoagulant activity in vitro. The low cytotoxicity of ECA to venous endothelial cell line (ECV-304) also expands its value in future in vivo studies. However, to utilize it as a model for novel anticoagulant agents, its possible interference with other anticoagulant mechanisms must be addressed.  相似文献   

15.
The ability of heparin fractions of different molecular weight to potentiate the action of antithrombin III against the coagulation factors thrombin and Xa has been examined in purified reaction mixtures and in plasma. Residual thrombin and Xa have been determined by their peptidase activities against the synthetic peptide substrates H-D-Phe-Pip-Arg-pNA and Bz-Ile-Gly-Arg-pNA. High molecular weight heparin fractions were found to have higher anticoagulant activities than low molecular weight heparin when studied with both thrombin and Xa incubation mixtures in purified mixtures and in plasma. The inhibition of thrombin by heparin fractions and antithrombin III was unaffected by other plasma components. However, normal human plasma contained a component that inhibited the heparin and antithrombin III inhibition of Xa particularly when the high molecular weight heparin fraction was used. Experiments using a purified preparation of platelet factor 4 suggested that the platelet-derived heparin-neutralizing protein was not responsible for the inhibition.  相似文献   

16.
Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR1). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR1-deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR1-specific agonists and inhibitors were used to demonstrate that PAR1 mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR1 and not PAR2. These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis.  相似文献   

17.
A low molecular weight protein protease inhibitor was purified from Japanese horseshoe crab (Tachypleus tridentatus) hemocytes. It consisted of a single polypeptide with a total of 61 amino acid residues. This protease inhibitor inhibited stoichiometrically the amidase activity of trypsin (Ki = 4.60 X 10(-10) M), and also had inhibitory effects on alpha-chymotrypsin (Ki = 5.54 X 10(-9) M), elastase (Ki = 7.20 X 10(-8) M), plasmin, and plasma kallikrein. However, it had no effect on T. tridentatus clotting enzyme and factor C, mammalian blood coagulation factors (activated protein C, factor Xa and alpha-thrombin), papain, and thermolysin. The complete amino acid sequence of this inhibitor was determined and its sequence was compared with those of bovine pancreatic trypsin inhibitor (BPTI) and other Kunitz-type inhibitors. It was found that the amino acid sequence of this inhibitor has a high homology of 47 and 43% with those of sea anemone inhibitor 5-II and BPTI, respectively. Thus, this protease inhibitor appeared to be one of the typical Kunitz-type protease inhibitors.  相似文献   

18.
Activation of coagulation factor X via the intrinsic pathway requires the assembly of factors IXa and VIII on lipid membranes. It is known that the platelet expresses membrane sites for assembly of factors IXa/VIII and promotes efficient factor X activation. We now show that human blood monocytes, but not lymphocytes or polymorphonuclear leukocytes, also express appropriate sites for factors IXa/VIII assembly. The maximal rate of factor X activation by factors IXa (0.75 nM) and VIII (1 unit/ml) assembled on monocytes is similar to the maximal rate on platelets. This rate, adjusted per micromole of lipid phosphorus, is 1636 +/- 358 nM factor Xa/min on monocyte, and 1569 +/- 54 nM factor Xa/min on platelets. At physiologic concentrations of factors X and VIII, the activation rate increases with factor IXa concentration asymptotically approaching a maximum. Half-maximal rate is achieved with 1.0 +/- 0.16 nM factor IXa. Monocytes and macrophages, but not platelets, can express membrane tissue factor and thus promote simultaneous assembly of two distinct factor X-activating protease complexes. In these studies, blood monocytes and alveolar macrophages are used as membrane sources in kinetic experiments comparing factor X activation by intrinsic (factor IXa/VIII) versus extrinsic (factor VII/tissue factor) protease complexes. At plasma concentration of factors VIII and VII, apparent Km on the monocyte is 14.6 +/- 1.4 nM for intrinsic and 117.0 +/- 10.1 nM for extrinsic activation. The apparent Km on alveolar macrophages is 12.1 +/- 1.9 and 90.6 +/- 10.2 nM for intrinsic and extrinsic activation, respectively. Maximal rates on monocytes at saturating concentration of factors IXa, VIII, and VII are 48.0 +/- 11.2 nM factor Xa/min, for intrinsic activation, and 16.5 +/- 5.5 nM factor Xa/min, for extrinsic activation. These data show that the monocyte/macrophage is the only blood-derived cell type with membrane sites for both intrinsic and extrinsic pathway assembly. We have exploited this characteristic of the monocyte/macrophage membrane to demonstrate that factor X activation by the intrinsic pathway protease is more efficient than activation via the extrinsic pathway protease complex.  相似文献   

19.
The effect of a synthetic pentasaccharide that specifically causes the inactivation of factor Xa on the development of prothrombinase activity in human plasma was monitored using four triggers of coagulation: (a) human brain thromboplastin; (b) contact activation; (c) factor X activating enzyme complex; (d) prothrombin activating enzyme complex. Inhibition was similar with the triggers a, b and c. With prothrombinase (d), the inhibition strongly decreased with increasing amounts of factor Va present. This indicates that only free factor Xa is inhibited. Because both the intrinsic pathway (b) and the extrinsic pathway (a) are inhibited by the pentasaccharide, we conclude that free factor Xa plays a rate-limiting role in the pathways, so that there is no reason to postulate the existence of 'supercomplexes' consisting of factors IXa, VIIIa, X(a), Va and prothrombin adsorbed on the same phospholipid particle (intrinsic system) or factor VII(a), X(a), Va and prothrombin adsorbed on tissue thromboplastin (extrinsic system).  相似文献   

20.
Infusion of tumor necrosis factor (TNF) into tumor-bearing mice led to intravascular clot formation with fibrin deposition in microvessels in the tumor bed in close association with the vessel wall, which could be prevented by active site-blocked factor IXa (IXai). This observation prompted us to examine the role of the intrinsic system in activation of the coagulation mechanism on TNF-stimulated human endothelial cell monolayers and endothelial-derived matrix during exposure to purified coagulation factors or flowing blood. Treatment of endothelial cells in intact monolayers with TNF induced expression of the procoagulant cofactor tissue factor (TF) in a dose-dependent manner, and after removal of the cells, TF was present in the matrix. TNF-treated endothelial cell monolayers exposed to blood anticoagulated with low molecular weight heparin induced activation of coagulation. Addition of IXai blocked the procoagulant response on TNF-treated endothelial cells, and consistent with this, the presence of factor IX/VIIIa enhanced endothelial TF/factor VII(a) factor X activation over a wide range of cytokine concentrations (0-600 pM). When TF-dependent factor X activation on endothelial cells was compared with preparations of subendothelium, the extracellular matrix was 10-20 times more effective. IXai blocked TF/factor VII(a) mediated activated coagulation on matrix, but only at lower concentration of TNF (less than 50 pM). Similarly, enhancement of factor Xa formation on matrix by factors IX/VIIIa was most evident at lower TNF concentrations. When anticoagulated whole blood flowing with a shear of 300 s-1 was exposed to matrices from TNF-treated endothelial cells, but not matrices from control cells, fibrinopeptide A (FPA) generation, fibrin deposition, and platelet aggregate formation were observed. FPA generation could be prevented by a blocking antibody to TF and by active site-blocked factor Xa (Xai) over a wide range of TNF concentrations (0-600 pM), whereas IXai only blocked FPA generation at lower TNF concentrations (less than 50 pM). Activation of coagulation on matrix from TNF-stimulated endothelial cells was dependent on the presence of platelets, indicating the important role of platelets in propagating the reactions leading to fibrin formation. These observations demonstrate the potential of cytokine-stimulated endothelium and their matrix to activate coagulation and suggest the importance of the intrinsic system in factor Xa formation on cellular surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号