首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
TNF plays important roles in the protection and onset of malaria. Although mast cells are known as a source of TNF, little is known about the relationship between mast cells and pathogenesis of malaria. In this study, mast cell-deficient WBB6F1-W/W(v) (W/W(v)) and the control littermate WBB6F1+/+ (+/+) mice were infected with 1 x 10(5) of Plasmodium berghei ANKA. +/+ mice had lower parasitemia with higher TNF levels, as compared with W/W(v) mice. Diminished resistance in W/W(v) mice was considered to be due to mast cells and TNF. This fact was confirmed by experiments in W/W(v) mice reconstituted with bone marrow-derived mast cells (BMMCs) of +/+ mice or of TNF-/- mice. W/W(v) mice with BMMCs of +/+ mice exhibit lower parasitemia and mortality accompanying significantly higher TNF levels than those of W/W(v) mice. Parasitemia in W/W(v) mice with BMMCs of TNF-/- mice was higher than that in +/+ mice. Activation of mast cells by anti-IgE or compound 48/80 resulted in release of TNF and decrease of parasitemia. In addition, splenic hypertrophy and increased number of mast cells in the spleen were observed after infection in +/+ mice and W/W(v) mice reconstituted with BMMCs of +/+ mice as compared with W/W(v) mice. These findings propose a novel mechanism that mast cells and mast cell-derived TNF play protective roles in malaria.  相似文献   

2.
3.
4.
5.
6.
7.
Calcineurin is a calmodulin-stimulated phosphatase that regulates the nuclear translocation of nuclear factor of activated T cell (NFAT) c1-4 through dephosphorylation. We believe that this mechanism plays various roles in the remodeling and maintenance of Ictidomys tridecemlineatus skeletal muscle. During hibernation, bouts of torpor and arousal take place, and squirrels do not lose muscle mass despite being inactive. Protein expression of Ca2+ signaling proteins were studied using immunoblotting. A DNA-protein interaction ELISA technique was created to test the binding of NFATs in the nucleus to DNA probes containing the NFAT response element under environmental conditions reflective of those during hibernation. Calcineurin protein levels increased by 3.08-fold during torpor (compared to euthermic control), whereas calpain1 levels also rose by 3.66-fold during torpor. Calmodulin levels were elevated upon entering torpor. NFATc4 binding to DNA showed a 1.4-fold increase during torpor, and we found that this binding was further enhanced when 600 nM of Ca2+ was supplemented. We also found that decreasing the temperature of ELISAs resulted in progressive decreases in the binding of NFATs c1, c3, and c4 to DNA. In summary, calmodulin and calpain1 appear to activate calcineurin and NFATc4 during torpor. NFAT binding to target promoters is affected by intranuclear [Ca2+] and environmental temperatures. Therefore, Ca2+ signaling and temperature changes play key roles in regulation of the NFAT-calcineurin pathway in skeletal muscle of hibernating 13-lined ground squirrels over the torpor-arousal cycle, and they may contribute to the avoidance of disuse-induced muscle atrophy that occurs naturally in these animals.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
In this work we used micro-array experiments to determine the role of each nonessential subunit of the conserved Ccr4-Not complex in the control of gene expression in the yeast Saccharomyces cerevisiae. The study was performed with cells growing exponentially in high glucose and with cells grown to glucose depletion. Specific patterns of gene deregulation were observed upon deletion of any given subunit, revealing the specificity of each subunit''s function. Consistently, the purification of the Ccr4-Not complex through Caf40p by tandem affinity purification from wild-type cells or cells lacking individual subunits of the Ccr4-Not complex revealed that each subunit had a particular impact on complex integrity. Furthermore, the micro-arrays revealed that the role of each subunit was specific to the growth conditions. From the study of only two different growth conditions, revealing an impact of the Ccr4-Not complex on more than 85% of all studied genes, we can infer that the Ccr4-Not complex is important for expression of most of the yeast genome.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号