首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plasmids expressing different domains of the hepatis C virus (HCV) envelope E2 glycoprotein from a genotype 1a isolate were constructed to compare the immunogenic potential of E2 in nucleic acid-based immunizations. One plasmid, pCIE2t, expressed a C-terminally truncated form of E2, while others, pS2.SE2A to pS2.SE2E, encoded the adjacent 60-amino-acid (aa) sequences of E2 (inserts A to E) expressed as a fusion with the hepatitis B virus surface antigen. BALB/c mice were given injections of the plasmids intramuscularly (i.m.) or intraepidermally (i.e.) via a gene gun (biolistic introduction), and induced humoral immune responses were evaluated. The i.e. injections resulted in higher seroconversion rates and antibody titers, up to 100-fold, than did the i.m. injections (P = 0.01 to 0.04). Three restricted immunogenic domains, E2A (aa 384 to 443), E2C (aa 504 to 555), and E2E (aa 609 to 674), that yielded antibody titers ranging from 1:59 to > 1:43,700 could be identified. Subtype 1a- and 1b-derived E2 antigens and synthetic peptides were used in Western blot and enzyme-linked immunosorbent assay analyses, which revealed that the cross-reactivity of the plasmid-induced antibodies was linked both to the type of antigen expressed and to the injection mode. Induced anti-E2 antibodies could immunoprecipitate noncovalent E1E2 complexes believed to exist on the surface of HCV virions. This study allowed us to identify restricted immunogenic domains within E2 and demonstrated that different routes of injection of HCV E2 plasmids can result in quantitatively and qualitatively different humoral immune responses.  相似文献   

2.
Glycoproteins on the surface of viral particles present the main target of neutralizing antibodies. The structural proteins of most Flaviviruses are known to elicit neutralizing antibodies and, thus, to help in both the natural resolution of the infection and the protection from challenge with homologous hepatitis C virus (HCV). Because such antigens are associated with the viral clearance in both humans and chimpanzees, we aimed to express the E2/NS1 protein of HCV and to study the role of anti-E2/NS1 antibodies in the natural resolution of HCV infection. The prevalence of anti-E2/NS1 antibodies to recombinant E2/NS1 protein was seen by Western blot in chronic liver disease patients (15 chronic hepatitis and 12 cirrhotic patients), who were positive for anti-HCV and negative for HBV infection. The study also included 2 negative controls (positive for HBV infection and negative for anti-HCV antibodies) and 2 healthy controls (negative for both HBV and HCV infection). Anti-E2/NS1 was present in 20% of the chronic hepatitis and 16% of the cirrhosis patients. None of the controls were positive for anti-E2/NS1 antibodies. Serum samples positive for anti-E2/NS1 antibodies were also positive for HCV RNA by RT/PCR. Accordingly, the presence of anti-E2/NS1 may have very little or no role in the natural resolution of HCV infection.  相似文献   

3.
Purification of hepatitis C virus (HCV) from sera of infected patients has proven elusive, hampering efforts to perform structure-function analysis of the viral components. Recombinant forms of the viral glycoproteins have been used instead for functional studies, but uncertainty exists as to whether they closely mimic the virion proteins. Here, we used HCV virus-like particles (VLPs) generated in insect cells infected with a recombinant baculovirus expressing viral structural proteins. Electron microscopic analysis revealed a population of pleomorphic VLPs that were at least partially enveloped with bilayer membranes and had viral glycoprotein spikes protruding from the surface. Immunogold labeling using specific monoclonal antibodies (MAbs) demonstrated these protrusions to be the E1 and E2 glycoproteins. A panel of anti-E2 MAbs was used to probe the surface topology of E2 on the VLPs and to compare the antigenicity of the VLPs with that of truncated E2 (E2(660)) or the full-length (FL) E1E2 complex expressed in mammalian cells. While most MAbs bound to all forms of antigen, a number of others showed striking differences in their abilities to recognize the various E2 forms. All MAbs directed against hypervariable region 1 (HVR-1) recognized both native and denatured E2(660) with comparable affinities, but most bound either weakly or not at all to the FL E1E2 complex or to VLPs. HVR-1 on VLPs was accessible to these MAbs only after denaturation. Importantly, a subset of MAbs specific for amino acids 464 to 475 and 524 to 535 recognized E2(660) but not VLPs or FL E1E2 complex. The antigenic differences between E2(660,) FL E1E2, and VLPs strongly point to the existence of structural differences, which may have functional relevance. Trypsin treatment of VLPs removed the N-terminal part of E2, resulting in a 42-kDa fragment. In the presence of detergent, this was further reduced to a trypsin-resistant 25-kDa fragment, which could be useful for structural studies.  相似文献   

4.
Evidence from clinical and experimental studies of human and chimpanzees suggests that hepatitis C virus (HCV) envelope glycoprotein E2 is a key antigen for developing a vaccine against HCV infection. To identify B-cell epitopes in HCV E2, six murine monoclonal antibodies (MAbs), CET-1 to -6, specific for HCV E2 protein were generated by using recombinant proteins containing E2t (a C-terminally truncated domain of HCV E2 [amino acids 386 to 693] fused to human growth hormone and glycoprotein D). We tested whether HCV-infected sera were able to inhibit the binding of CET MAbs to the former fusion protein. Inhibitory activity was observed in most sera tested, which indicated that CET-1 to -6 were similar to anti-E2 antibodies in human sera with respect to the epitope specificity. The spacial relationship of epitopes on E2 recognized by CET MAbs was determined by surface plasmon resonance analysis and competitive enzyme-linked immunosorbent assay. The data indicated that three overlapping epitopes were recognized by CET-1 to -6. For mapping the epitopes recognized by CET MAbs, we analyzed the reactivities of CET MAbs to six truncated forms and two chimeric forms of recombinant E2 proteins. The data suggest that the epitopes recognized by CET-1 to -6 are located in a small domain of E2 spanning amino acid residues 528 to 546.  相似文献   

5.
Tang TK  Wu MP  Chen ST  Hou MH  Hong MH  Pan FM  Yu HM  Chen JH  Yao CW  Wang AH 《Proteomics》2005,5(4):925-937
Severe acute respiratory syndrome (SARS) is a serious health threat and its early diagnosis is important for infection control and potential treatment of the disease. Diagnostic tools require rapid and accurate methods, of which a capture ELISA method may be useful. Toward this goal, we have prepared and characterized soluble full-length nucleocapsid proteins (N protein) from SARS and 229E human coronaviruses. N proteins form oligomers, mostly as dimers at low concentration. These two N proteins degrade rapidly upon storage and the major degraded N protein is the C-terminal fragment of amino acid (aa) 169-422. Taken together with other data, we suggest that N protein is a two-domain protein, with the N-terminal aa 50-150 as the RNA-binding domain and the C-terminal aa 169-422 as the dimerization domain. Polyclonal antibodies against the SARS N protein have been produced and the strong binding sites of the anti-nucleocapsid protein (NP) antibodies produced were mapped to aa 1-20, aa 150-170 and aa 390-410. These sites are generally consistent with those mapped by sera obtained from SARS patients. The SARS anti-NP antibody was able to clearly detect SARS virus grown in Vero E6 cells and did not cross-react with the NP from the human coronavirus 229E. We have predicted several antigenic sites (15-20 amino acids) of S, M and N proteins and produced antibodies against those peptides, some of which could be recognized by sera obtained from SARS patients. Antibodies against the NP peptides could detect the cognate N protein clearly. Further refinement of these antibodies, particularly large-scale production of monoclonal antibodies, could lead to the development of useful diagnostic kits for diseases associated with SARS and other human coronaviruses.  相似文献   

6.
为确定SARS-CoV N蛋白的特异抗原表位,对3种人冠状病毒SARS-CoV、HCoV-OC43和HCoV-229E N蛋白之间的交叉免疫反应进行了系统研究。构建了分别表达SARS-CoV、HCoV-OC43和HCoV-229E N蛋白的重组痘苗病毒,并制备了相应的小鼠免疫血清。用间接免疫荧光方法,检测了3种N蛋白的表达及其与3种冠状病毒免疫动物血清和SARS病人恢复期血清之间的反应。与此同时,用Western blot方法分析了原核表达的39个不同区段的SARS-CoV N蛋白与3种冠状病毒动物免疫血清和SARS病人恢复期血清之间的交叉反应性。免疫荧光检测结果表明,SARS-CoV、HCoV-OC43和HCoV-229E3种病毒的N蛋白在重组痘苗病毒感染的HeLa细胞中均可以特异表达;3种N蛋白之间存在明显交叉免疫反应。Western blot结果显示,SARS-CoV N蛋白的表位主要位于30~60aa、170~184aa、301~320aa和360~422aa;与HCoV-OC43的交叉反应表位主要位于30~60aa、90~120aa、204~214aa和320~360aa;与HCoV-229E的交叉反应表位主要位于30~60aa、150~160aa和301~360aa。含SARS-CoV N蛋白特异表位的重组肽N155b(60~214aa)和N185(30~214aa)只与SARS病人恢复期血清和灭活SARS-CoV免疫小鼠的血清反应,而不与灭活HCoV-OC43和HCoV-229E免疫的山羊血清产生交叉反应。上述结果为使用SARS-CoV N蛋白抗原进行特异诊断试剂的研究,提供了重要的实验依据。  相似文献   

7.
Deglycosylation of viral glycoproteins has been shown to influence the number of available epitopes and to modulate immune recognition of antigens. We investigated the role played by N-glycans in the immunogenicity of hepatitis C virus (HCV) E1 envelope glycoprotein, a naturally poor immunogen. Eight plasmids were engineered, encoding E1 protein mutants in which the four N-linked glycosylation sites of the protein were mutated separately or in combination. In vitro expression studies showed an influence of N-linked glycosylation on expression efficiency, instability, and/or secretion of the mutated proteins. Immunogenicity of the E1 mutants was studied in BALB/c mice following intramuscular and intraepidermal injection of the plasmids. Whereas some mutations had no or only minor effects on the antibody titers induced, mutation of the fourth glycosylation site (N4) significantly enhanced the anti-E1 humoral response in terms of both seroconversion rates and antibody titers. Moreover, antibody induced by the N4 mutant was able to recognize HCV-like particles with higher titers than those induced by the wild-type construct. Epitope mapping indicated that the E1 mutant antigens induced antibody directed at two major domains: one, located at amino acids (aa) 313 to 332, which is known to be reactive with sera from HCV patients, and a second one, located in the N-terminal domain of E1 (aa 192 to 226). Analysis of the induced immune cellular response confirmed the induction of gamma interferon-producing cells by all mutants, albeit to different levels. These results show that N-linked glycosylation can limit the antibody response to the HCV E1 protein and reveal a potential vaccine candidate with enhanced immunogenicity.  相似文献   

8.
E1 and E2 glycoproteins are structural components of hepatitis C virus (HCV) virion. They are involved in cellular receptors interaction, neutralising antibodies elicitation, and viral morphogenesis. They are considered as major candidates for anti-HCV vaccine. In this report, we first expressed tandem E1E2 as well as C-terminally truncated E1 fragment and C-terminally truncated E2 fragment, respectively, in Escherichia coli cells and the proteins were purified to homogenesis. All the purified proteins can react specifically with patient sera. Both purified chimeric protein E1E2 and protein E2 can interact with a putative cellular receptor CD81, while purified protein E1 cannot interact with CD81. The sera of rabbit immunized with the E1E2 inhibited the binding of E2 protein to the major extracellular loop of human CD81 and reacted with both proteins E1 and E2, respectively. Anti-E1 and E2 antibodies can be generated simultaneously in the rabbit immunized with the E1E2, and the titers of antibodies were 63 or 56% higher than the titers induced by E1 or E2 alone, respectively. The results suggest that E1 and E2 can enhance their immunogenicity each other in chimeric protein E1E2 and the E. coli-derived chimeric protein E1E2 and corresponding antisera can be used as an useful tools in anti-HCV vaccine research.  相似文献   

9.
Various strategies involving the use of hepatitis C virus (HCV) E1 and E2 envelope glycoproteins as immunogens have been developed for prophylactic vaccination against HCV. However, the ideal mode of processing and presenting these immunogens for effective vaccination has yet to be determined. We used our recently described vaccine candidate based on full-length HCV E1 or E2 glycoproteins fused to the heterologous hepatitis B virus S envelope protein to compare the use of the E1 and E2 proteins as separate immunogens with their use as the E1E2 heterodimer, in terms of immunogenetic potential and the capacity to induce neutralizing antibodies. The specific anti-E1 and anti-E2 antibody responses induced in animals immunized with vaccine particles harboring the heterodimer were profoundly impaired with respect to those in animals immunized with particles harboring E1 and E2 separately. Moreover, the anti-E1 and anti-E2 antibodies had additive neutralizing properties that increase the cross-neutralization of heterologous strains of various HCV genotypes, highlighting the importance of including both E1 and E2 in the vaccine for an effective vaccination strategy. Our study has important implications for the optimization of HCV vaccination strategies based on HCV envelope proteins, regardless of the platform used to present these proteins to the immune system.  相似文献   

10.
We constructed recombinant vaccinia virus vectors for expression of the structural region of hepatitis C virus (HCV). Infection of mammalian cells with a vector (vv/HCV1-906) encoding C-E1-E2-NS2 generated major protein species of 22 kDa (C), 33 to 35 kDa (E1), and 70 to 72 kDa (E2), as observed previously with other mammalian expression systems. The bulk of the E1 and E2 expressed by vv/HCV1-906 was found integrated into endoplasmic reticulum membranes as core-glycosylated species, suggesting that these E1 and E2 species represent intracellular forms of the HCV envelope proteins. HCV E1 and E2 formed E1-E2 complexes which were precipitated by either anti-E1 or anti-E2 serum and which sedimented at approximately 15 S on glycerol density gradients. No evidence of intermolecular disulfide bonding between E1 and E2 was detected. E1 and E2 were copurified to approximately 90% purity by mild detergent extraction followed by chromatography on Galanthus nivalus lectin-agarose and DEAE-Fractogel. Immunization of chimpanzees with purified E1-E2 generated high titers of anti-E1 and anti-E2 antibodies. Further studies, to be reported separately, demonstrated that purified E1-E2 complexes were recognized at high frequency by HCV+ human sera (D. Y. Chien, Q.-L. Choo, R. Ralston, R. Spaete, M. Tong, M. Houghton, and G. Kuo, Lancet, in press) and generated protective immunity in chimpanzees (Q.-L. Choo, G. Kuo, R. Ralston, A. Weiner, D. Chien, G. Van Nest, J. Han, K. Berger, K. Thudium, J. Kansopon, J. McFarland, A. Tabrizi, K. Ching, B. Mass, L. B. Cummins, E. Muchmore, and M. Houghton, submitted for publication), suggesting that these purified HCV envelope proteins display native HCV epitopes.  相似文献   

11.
在哺乳动物细胞中稳定表达丙型肝炎病毒E2糖蛋白   总被引:4,自引:0,他引:4  
利用DNA重组技术,将Ⅲ型中国株HCVE2/NS1基因片段插入真核表达载体,然后转染哺乳动物细胞NIH3T3以表达E2糖蛋白.检测显示来自3月以上培养的细胞克隆中表达产物分子量为70kD,经Westernblot证实该表达产物能与抗HCV阳性血清进行特异性反应.以上表明首次在哺乳动物细胞中成功表达Ⅲ型中国株HCV的E2糖蛋白,并建立相应的稳定表达细胞系.  相似文献   

12.
The majority of hepatitis C virus (HCV)-infected individuals progress from acute to chronic disease, despite the presence of a strong humoral immune response to the envelope glycoproteins E1 and E2. When expressed in mammalian cells, E1 and E2 form both noncovalently linked E1E2 heterodimers, believed to be properly folded, and disulfide-linked, high-molecular-weight aggregates that are misfolded. Previously, we identified 10 human monoclonal antibodies (HMAbs) that bind E2 glycoproteins from different genotypes. Here we demonstrate that one of these HMAbs, CBH-2, is unique in its ability to distinguish between properly folded and misfolded envelope proteins. This HMAb recognizes HCV-E2 only when complexed with E1. The E1E2 complexes recognized by CBH-2 are noncovalently linked heterodimers and not misfolded disulfide-linked, high-molecular-weight aggregates. The E1E2 heterodimers seen by CBH-2 no longer associate with the endoplasmic reticulum chaperone calnexin and are likely to represent the prebudding form of the HCV virion.  相似文献   

13.
HCVisthemajorcauseofposttransfusionnonA,nonBhepatitis[1].About50%oftheinfectionswilldevelopintochronichepatitisandamongthemabout20%willresultinlivercirrhosisandhepatocellularcarcinoma[2].BecausethetiterofHCVparticleinpatient’sbloodisextremelylow,andthereisno…  相似文献   

14.
Hepatitis C virus (HCV) often causes persistent infection despite the presence of neutralizing antibodies against the virus in the sera of hepatitis C patients. HCV infects both hepatocytes and B cells through the binding of its envelope glycoprotein E2 to CD81, the putative viral receptor. Previously, we have shown that E2-CD81 interaction induces hypermutation of heavy-chain immunoglobulin (V(H)) in B cells. We hypothesize that if HCV infects antibody-producing B cells, the resultant hypermutation of V(H) may lower the affinity and specificity of the HCV-specific antibodies, enabling HCV to escape from immune surveillance. To test this hypothesis, we infected human hybridoma clones producing either neutralizing or non-neutralizing anti-E2 or anti-E1 antibodies with a lymphotropic HCV (SB strain). All of the hybridoma clones, except for a neutralizing antibody-producing hybridoma, could be infected with HCV and support virus replication for at least 8 weeks after infection. The V(H) sequences in the infected hybridomas had a significantly higher mutation frequency than those in the uninfected hybridomas, with mutations concentrating in complementarity-determining region 3. These mutations lowered the antibody affinity against the targeting protein and also lowered the virus-neutralizing activity of anti-E2 antibodies. Furthermore, antibody-mediated complement-dependent cytotoxicity with the antibodies secreted from the HCV-infected hybridomas was impaired. These results suggest that HCV infection could cause some anti-HCV-antibody-producing hybridoma B cells to make less-protective antibodies.  相似文献   

15.
Homodimers of the truncated hepatitis E virus (HEV) capsid proteins, E2 and p239, were conformed to model the dominant antigenic determinants of HEV. Using E2 as an immunogen, two neutralizing monoclonal antibodies (mAbs), namely 8C11 and 8H3, were produced. We constructed a mouse-human chimeric antibody derived from 8C11 and its expression in Chinese hamster ovary (CHO) cells. cDNAs encoding variable regions of heavy and light chains were isolated from hybridoma cells and inserted into mammalian expression vectors containing cDNA of human gamma-1 and kappa constant regions, respectively. The vectors were then cotransfected into CHO cells, and a stable cell line was established. Results from indirect enzyme-linked immunosorbent assay (ELISA) and Western blot analysis showed that the chimeric antibody was assembled correctly to the native IgG molecule and could be secreted from the cells. Similar to the original mAb, the expressed chimeric antibody displayed HEV antigen-binding activity and an enhancement effect on 8H3 binding to HEV antigen. The chimeric antibody could specifically inhibit the binding of p239 to HepG2 cells and compete with HEV IgG in positive serum by antibody-competitive ELISA. The chimeric antibody is expected to be less immunogenic in human and more suitable for antibody therapy of hepatitis E.  相似文献   

16.
构建了丙型肝炎病毒核心蛋白的全长及N端和N端与谷胱甘肽巯基转移酶(GST)的融合表达克隆,比较了在不同大肠杆菌中的表达。表达蛋白为水溶性,经ELISA和蛋白质印迹分析,GSTC191的表达和稳定性都较差,GSTC69和GSTC40具有良好的稳定性,用GST亲和柱一步纯化,纯度可达90%,免疫小鼠可产生高滴度的抗体。应用表达的GSTC69和GSTC40抗原,检测人血清中的HCV核心蛋白抗体,初步结果  相似文献   

17.
Hepatitis C virus (HCV) envelope glycoproteins are highly glycosylated, with up to 5 and 11 N-linked glycans on E1 and E2, respectively. Most of the glycosylation sites on HCV envelope glycoproteins are conserved, and some of the glycans associated with these proteins have been shown to play an essential role in protein folding and HCV entry. Such a high level of glycosylation suggests that these glycans can limit the immunogenicity of HCV envelope proteins and restrict the binding of some antibodies to their epitopes. Here, we investigated whether these glycans can modulate the neutralizing activity of anti-HCV antibodies. HCV pseudoparticles (HCVpp) bearing wild-type glycoproteins or mutants at individual glycosylation sites were evaluated for their sensitivity to neutralization by antibodies from the sera of infected patients and anti-E2 monoclonal antibodies. While we did not find any evidence that N-linked glycans of E1 contribute to the masking of neutralizing epitopes, our data demonstrate that at least three glycans on E2 (denoted E2N1, E2N6, and E2N11) reduce the sensitivity of HCVpp to antibody neutralization. Importantly, these three glycans also reduced the access of CD81 to its E2 binding site, as shown by using a soluble form of the extracellular loop of CD81 in inhibition of entry. These data suggest that glycans E2N1, E2N6, and E2N11 are close to the binding site of CD81 and modulate both CD81 and neutralizing antibody binding to E2. In conclusion, this work indicates that HCV glycans contribute to the evasion of HCV from the humoral immune response.  相似文献   

18.
The E2 glycoprotein is a structural component of the hepatitis C virus (HCV) virion. It interacts with putative cellular receptors, elicits production of neutralising antibodies against the virus, and is involved in viral morphogenesis. The protein is considered as a major candidate for anti-HCV vaccine. Despite this, relatively little is known about this protein. Previous studies have focused on the antigenic and functional analysis of the glycosylated forms. This report describes expression of the ectodomain of E2 (recE2) in Escherichia coli cells, its purification, and initial characterisation of its structural and functional properties. It is demonstrated that the purified protein forms small soluble aggregates, which retain functional characteristics of its native counterpart, i.e., it interacts with a putative cellular receptor, CD81, and is recognised by both conformation-dependent and -independent anti-E2 monoclonal antibodies.  相似文献   

19.
Production of immunogenic hepatitis C virus (HCV) envelope proteins will assist in the future development of preventive or therapeutics applications. Only properly folded monomeric E2 protein is able to bind a putative cellular co-receptor CD81, but this interaction may modulate cell immune function. Recombinant E2 proteins, similar to the native form, but lacking undesirable immunoregulatory features, might be promising components of vaccine candidates against HCV. To obtain E2 suitable for structural as well as functional studies, a recombinant E2 variant (E2680) was produced in Pichia pastoris cells. E2680, comprising amino acids 384 to 680 of the HCV polyprotein, was secreted into the culture supernatant in the N-glycosilated form and was mainly composed of disulide-linked multimers. Both monomeric and oligomeric forms of E2680 were recognized by conformational-sensitive MAb H53. In addition, antibodies in sera from 70% of HCV-positive patients were reactive against E2680. By immunizing E2680 in BALB/c mice, both a specific cellular immune response and anti-E2680 IgG antibody titers of 1:200,000 were induced. Our data suggest that recombinant E2680 could be useful to successfully induce strong anti-HCV immunity.  相似文献   

20.
Lai CY  Tsai WY  Lin SR  Kao CL  Hu HP  King CC  Wu HC  Chang GJ  Wang WK 《Journal of virology》2008,82(13):6631-6643
The antibody response to the envelope (E) glycoprotein of dengue virus (DENV) is known to play a critical role in both protection from and enhancement of disease, especially after primary infection. However, the relative amounts of homologous and heterologous anti-E antibodies and their epitopes remain unclear. In this study, we examined the antibody responses to E protein as well as to precursor membrane (PrM), capsid, and nonstructural protein 1 (NS1) of four serotypes of DENV by Western blot analysis of DENV serotype 2-infected patients with different disease severity and immune status during an outbreak in southern Taiwan in 2002. Based on the early-convalescent-phase sera tested, the rates of antibody responses to PrM and NS1 proteins were significantly higher in patients with secondary infection than in those with primary infection. A blocking experiment and neutralization assay showed that more than 90% of anti-E antibodies after primary infection were cross-reactive and nonneutralizing against heterologous serotypes and that only a minor proportion were type specific, which may account for the type-specific neutralization activity. Moreover, the E-binding activity in sera of 10 patients with primary infection was greatly reduced by amino acid replacements of three fusion loop residues, tryptophan at position 101, leucine at position 107, and phenylalanine at position 108, but not by replacements of those outside the fusion loop of domain II, suggesting that the predominantly cross-reactive anti-E antibodies recognized epitopes involving the highly conserved residues at the fusion loop of domain II. These findings have implications for our understanding of the pathogenesis of dengue and for the future design of subunit vaccine against DENV as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号