首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Double-strand breakage (DSB) of DNA involves loss of information on the two strands of the DNA fibre and thus cannot be repaired by simple copying of the complementary strand which is possible with single-strand DNA damage. Homologous recombination (HR) can precisely repair DSB using another copy of the genome as template and non-homologous recombination (NHR) permits repair of DSB with little or no dependence on DNA sequence homology. In addition to the well-characterised Ku-dependent non-homologous end-joining (NHEJ) pathway, much recent attention has been focused on Ku-independent NHR. The complex interrelationships and regulation of NHR pathways remain poorly understood, even more so in the case of plants, and we present here an analysis of Ku-dependent and Ku-independent repair of DSB in Arabidopsis thaliana. We have characterised an Arabidopsis xrcc1 mutant and developed quantitative analysis of the kinetics of appearance and loss of γ-H2AX foci as a tool to measure DSB repair in dividing root tip cells of γ-irradiated plants in vivo. This approach has permitted determination of DSB repair kinetics in planta following a short pulse of γ-irradiation, establishing the existence of a Ku-independent, Xrcc1-dependent DSB repair pathway. Furthermore, our data show a role for Ku80 during the first minutes post-irradiation and that Xrcc1 also plays such a role, but only in the absence of Ku. The importance of Xrcc1 is, however, clearly visible at later times in the presence of Ku, showing that alternative end-joining plays an important role in DSB repair even in the presence of active NHEJ.  相似文献   

2.
DNA non-homologous end joining (NHEJ) and homologous recombination (HR) function to repair DNA double-strand breaks (DSBs) in G2 phase with HR preferentially repairing heterochromatin-associated DSBs (HC-DSBs). Here, we examine the regulation of repair pathway usage at two-ended DSBs in G2. We identify the speed of DSB repair as a major component influencing repair pathway usage showing that DNA damage and chromatin complexity are factors influencing DSB repair rate and pathway choice. Loss of NHEJ proteins also slows DSB repair allowing increased resection. However, expression of an autophosphorylation-defective DNA-PKcs mutant, which binds DSBs but precludes the completion of NHEJ, dramatically reduces DSB end resection at all DSBs. In contrast, loss of HR does not impair repair by NHEJ although CtIP-dependent end resection precludes NHEJ usage. We propose that NHEJ initially attempts to repair DSBs and, if rapid rejoining does not ensue, then resection occurs promoting repair by HR. Finally, we identify novel roles for ATM in regulating DSB end resection; an indirect role in promoting KAP-1-dependent chromatin relaxation and a direct role in phosphorylating and activating CtIP.  相似文献   

3.
Studies in the yeast Saccharomyces cerevisiae have validated the major features of the double-strand break repair (DSBR) model as an accurate representation of the pathway through which meiotic crossovers (COs) are produced. This success has led to this model being invoked to explain double-strand break (DSB) repair in other contexts. However, most non-crossover (NCO) recombinants generated during S. cerevisiae meiosis do not arise via a DSBR pathway. Furthermore, it is becoming increasingly clear that DSBR is a minor pathway for recombinational repair of DSBs that occur in mitotically-proliferating cells and that the synthesis-dependent strand annealing (SDSA) model appears to describe mitotic DSB repair more accurately. Fundamental dissimilarities between meiotic and mitotic recombination are not unexpected, since meiotic recombination serves a very different purpose (accurate chromosome segregation, which requires COs) than mitotic recombination (repair of DNA damage, which typically generates NCOs).  相似文献   

4.
BACKGROUND: Sequence-specific endonucleases with large recognition sites can cleave DNA in living cells, and, as a consequence, stimulate homologous recombination (HR) up to 10 000-fold. The recent development of artificial meganucleases with chosen specificities has provided the potential to target any chromosomal locus. Thus, they may represent a universal genome engineering tool and seem to be very promising for acute gene therapy. However, in toto applications depend on the ability to target somatic tissues as well as the proficiency of somatic cells to perform double-strand break (DSB)-induced HR. METHODS: In order to investigate DSB-induced HR in toto, we have designed transgenic mouse lines carrying a LagoZ gene interrupted by one I-SceI cleavage site surrounded by two direct repeats. The LagoZ gene can be rescued upon cleavage by I-SceI and HR between the two repeats in a process called single-strand annealing. beta-Galactosidase activity is monitored in liver after tail vein injection of adenovirus expressing the meganuclease I-SceI. RESULTS: In toto staining revealed a strong dotted pattern in all animals injected with adenovirus expressing I-SceI. In contrast, no staining could be detected in the control. beta-Galactosidase activity in liver extract, tissue section staining, and PCR analysis confirmed the presence of the recombined LagoZ gene. CONCLUSIONS: We demonstrate for the first time that meganucleases can be successfully delivered in animal and induce targeted genomic recombination in mice liver in toto. These results are an essential step towards the use of designed meganucleases and show the high potential of this technology in the field of gene therapy.  相似文献   

5.
赵烨  华跃进 《生命科学》2014,(11):1136-1142
耐辐射球菌对于电离辐射等DNA损伤剂具有极强的抗性,能够将同一个基因组中同时产生的高达100个以上的DNA双链断裂在数十小时内高效而精准地进行修复,是研究DNA双链断裂修复机制的重要模式生物。同源重组、非同源末端连接和单链退火途径作为3个主要的修复途径参与了耐辐射球菌基因组DNA双链断裂的修复过程。此外,一系列新发现的重要蛋白质,如Ppr I、Ddr B等对于耐辐射球菌基因组的修复过程同样至关重要。根据本实验室和国内外在这一研究领域近年来的报道,以不同的修复途径为线索,综述该菌DNA双链断裂修复机制的最新研究成果。  相似文献   

6.
Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double‐strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error‐free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I‐SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR‐white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals.  相似文献   

7.
Maintaining genome integrity in the germline is essential for survival and propagation of a species. In both mouse and human, germ cells originate during fetal development and are hypersensitive to both endogenous and exogenous DNA damaging agents. Currently, mechanistic understanding of how primordial germ cells respond to DNA damage is limited in part by the tools available to study these cells. We developed a mouse transgenic reporter strain expressing a 53BP1‐mCherry fusion protein under the control of the Oct4ΔPE embryonic germ cell‐specific promoter. This reporter binds sites of DNA double strand breaks (DSBs) on chromatin, forming foci. Using ionizing radiation as a DNA DSB‐inducing agent, we show that the transgenic reporter expresses specifically in the embryonic germ cells of both sexes and forms DNA damage induced foci in both a dose‐ and time‐dependent manner. The dynamic time‐sensitive and dose‐sensitive DNA damage detection ability of this transgenic reporter, in combination with its specific expression in embryonic germ cells, makes it a versatile and valuable tool for increasing our understanding of DNA damage responses in these unique cells.  相似文献   

8.
A double -strand break (DSB) is one of the most deleterious forms of DNA damage. In eukaryotic cells, two main repair pathways have evolved to repair DSBs, homologous recombination (HR) and non-homologous end-joining (NHEJ). HR is the predominant pathway of repair in the unicellular eukaryotic organism, S. cerevisiae. However, during replicative aging the relative use of HR and NHEJ shifts in favor of end-joining repair. By monitoring repair events in the HO-DSB system, we find that early in replicative aging there is a decrease in the association of long-range resection factors, Dna2-Sgs1 and Exo1 at the break site and a decrease in DNA resection. Subsequently, as aging progressed, the recovery of Ku70 at DSBs decreased and the break site associated with the nuclear pore complex at the nuclear periphery, which is the location where DSB repair occurs through alternative pathways that are more mutagenic. End-bridging remained intact as HR and NHEJ declined, but eventually it too became disrupted in cells at advanced replicative age. In all, our work provides insight into the molecular changes in DSB repair pathway during replicative aging. HR first declined, resulting in a transient increase in the NHEJ. However, with increased cellular divisions, Ku70 recovery at DSBs and NHEJ subsequently declined. In wild type cells of advanced replicative age, there was a high frequency of repair products with genomic deletions and microhomologies at the break junction, events not observed in young cells which repaired primarily by HR.  相似文献   

9.
Ionizing radiation is a potent inducer of DNA damage because it causes single- and double-strand breaks, alkali-labile sites, base damage, and crosslinks. The interest in ionizing radiation is due to its environmental and clinical implications. Single-strand breaks, which are the initial damage induced by a genotoxic agent, can be used as a biomarker of exposure, whereas the more biologically relevant double-strand breaks can be analyzed to quantify the extent of damage. In the present study the effects of 137Cs γ-radiation at doses of 1, 5, and 10 Gray on DNA and subsequent repair by C3H10T1/2 cells (mouse embryo fibroblasts) were investigated. Two versions of the comet assay, a sensitive method for evaluating DNA damage, were implemented: the alkaline one to detect single-strand breaks, and the neutral one to identify double-strand breaks. The results show a good linear relation between DNA damage and radiation dose, for both single-strand and double-strand breaks. A statistically significant difference with respect to controls was found at the lowest dose of 1 Gy. Heterogeneity in DNA damage within the cell population was observed as a function of radiation dose. Repair kinetics showed that most of the damage was repaired within 2 h after irradiation, and that the highest rejoining rate occurred with the highest dose (10 Gy). Single-strand breaks were completely repaired 24 h after irradiation, whereas residual double-strand breaks were still present. This finding needs further investigation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Homologous recombination in DNA repair and DNA damage tolerance   总被引:20,自引:0,他引:20  
Li X  Heyer WD 《Cell research》2008,18(1):99-113
Homologous recombination (HR) comprises a series of interrelated pathways that function in the repair of DNA double-stranded breaks (DSBs) and interstrand crosslinks (ICLs). In addition, recombination provides critical support for DNA replication in the recovery of stalled or broken replication forks, contributing to tolerance of DNA damage. A central core of proteins, most critically the RecA homolog Rad51, catalyzes the key reactions that typify HR: homology search and DNA strand invasion. The diverse functions of recombination are reflected in the need for context-specific factors that perform supplemental functions in conjunction with the core proteins. The inability to properly repair complex DNA damage and resolve DNA replication stress leads to genomic instability and contributes to cancer etiology. Mutations in the BRCA2 recombination gene cause predisposition to breast and ovarian cancer as well as Fanconi anemia, a cancer predisposition syndrome characterized by a defect in the repair of DNA interstrand crosslinks. The cellular functions of recombination are also germane to DNA-based treatment modalities of cancer, which target replicating cells by the direct or indirect induction of DNA lesions that are substrates for recombination pathways. This review focuses on mechanistic aspects of HR relating to DSB and ICL repair as well as replication fork support.  相似文献   

11.
12.
DNA double strand breaks (DSBs) are a severe threat to genome integrity and a potential cause of tumorigenesis, which is a multi-stage process and involves many factors including the mutation of oncogenes and tumor suppressors, some of which are transcribed microRNAs (miRNAs). Among more than 2000 known miRNAs, miR-21 is a unique onco-miRNA that is highly expressed in almost all types of human tumors and is associated with tumorigenesis through its multiple targets. However, it remains unclear whether there is any functional link between DSBs and miR-21 expression and, if so, does the link contribute to DSB-induced genomic instability/tumorigenesis. To address this question, we used DNA-PKcs-/- (deficient in non-homologous end-joining (NHEJ)) and Rad54-/- (deficient in homologous recombination repair (HRR)) mouse embryonic fibroblasts (MEFs) since NHEJ and HRR are the major pathways for DSB repair in mammalian cells. Our results indicate that levels of miR-21 are elevated in these DSB repair (DSBR) deficient cells, and ionizing radiation (IR) further increases these levels in both wild-type (WT) and DSBR-deficient cells. Interestingly, IR stimulated growth in soft agar and this effect was greatly reduced by blocking miR-21 expression in both WT and DSBR-deficient cells. Taken together, our results suggest that either IR or DSBR-deficient can lead to an upregulation of miR-21 levels and that miR-21 is associated with IR-induced cell growth in soft agar. These results may help our understanding of DSB-induced tumorigenesis and provide information that could facilitate the development of new strategies to prevent DSB-induced carcinogenesis.  相似文献   

13.
The Mre11–Rad50 nuclease–ATPase is an evolutionarily conserved multifunctional DNA double‐strand break (DSB) repair factor. Mre11–Rad50's mechanism in the processing, tethering, and signaling of DSBs is unclear, in part because we lack a structural framework for its interaction with DNA in different functional states. We determined the crystal structure of Thermotoga maritima Rad50NBD (nucleotide‐binding domain) in complex with Mre11HLH (helix‐loop‐helix domain), AMPPNP, and double‐stranded DNA. DNA binds between both coiled‐coil domains of the Rad50 dimer with main interactions to a strand‐loop‐helix motif on the NBD. Our analysis suggests that this motif on Rad50 does not directly recognize DNA ends and binds internal sites on DNA. Functional studies reveal that DNA binding to Rad50 is not critical for DNA double‐strand break repair but is important for telomere maintenance. In summary, we provide a structural framework for DNA binding to Rad50 in the ATP‐bound state.  相似文献   

14.
Double-strand breaks (DSBs), arising from exposure to exogenous clastogens or as a by-product of endogenous cellular metabolism, pose grave threats to genome integrity. DSBs can sever whole chromosomes, leading to chromosomal instability, a hallmark of cancer. Healing broken DNA takes time, and it is therefore essential to temporarily halt cell division while DSB repair is underway. The seminal discovery of cyclin-dependent kinases as master regulators of the cell cycle unleashed a series of studies aimed at defining how the DNA damage response network delays cell division. These efforts culminated with the identification of Cdc25, the protein phosphatase that activates Cdc2/Cdk1, as a critical target of the checkpoint kinase Chk1. However, regulation works both ways, as recent studies have revealed that Cdc2 activity and cell cycle position determine whether DSBs are repaired by non-homologous end-joining or homologous recombination (HR). Central to this regulation are the proteins that initiate the processing of DNA ends for HR repair, Mre11-Rad50-Nbs1 protein complex and Ctp1/Sae2/CtIP, and the checkpoint kinases Tel1/ATM and Rad3/ATR. Here, we review recent findings and provide insight on how proteins that regulate cell cycle progression affect DSB repair, and, conversely how proteins that repair DSBs affect cell cycle progression.  相似文献   

15.
Homologous recombination (HR) and non‐homologous end joining (NHEJ) represent distinct pathways for repairing DNA double‐strand breaks (DSBs). Previous work implicated Artemis and ATM in an NHEJ‐dependent process, which repairs a defined subset of radiation‐induced DSBs in G1‐phase. Here, we show that in G2, as in G1, NHEJ represents the major DSB‐repair pathway whereas HR is only essential for repair of ~15% of X‐ or γ‐ray‐induced DSBs. In addition to requiring the known HR proteins, Brca2, Rad51 and Rad54, repair of radiation‐induced DSBs by HR in G2 also involves Artemis and ATM suggesting that they promote NHEJ during G1 but HR during G2. The dependency for ATM for repair is relieved by depleting KAP‐1, providing evidence that HR in G2 repairs heterochromatin‐associated DSBs. Although not core HR proteins, ATM and Artemis are required for efficient formation of single‐stranded DNA and Rad51 foci at radiation‐induced DSBs in G2 with Artemis function requiring its endonuclease activity. We suggest that Artemis endonuclease removes lesions or secondary structures, which inhibit end resection and preclude the completion of HR or NHEJ.  相似文献   

16.
Recent developments of tools for targeted genome modification have led to new concepts in how multiple traits can be combined. Targeted genome modification is based on the use of nucleases with tailor‐made specificities to introduce a DNA double‐strand break (DSB) at specific target loci. A re‐engineered meganuclease was designed for specific cleavage of an endogenous target sequence adjacent to a transgenic insect control locus in cotton. The combination of targeted DNA cleavage and homologous recombination–mediated repair made precise targeted insertion of additional trait genes (hppd, epsps) feasible in cotton. Targeted insertion events were recovered at a frequency of about 2% of the independently transformed embryogenic callus lines. We further demonstrated that all trait genes were inherited as a single genetic unit, which will simplify future multiple‐trait introgression.  相似文献   

17.
DNA double‐strand breaks (DSBs) can be repaired by two major pathways: non‐homologous end‐joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)‐based approach, we identify 11 high‐confidence REV7 interactors and elucidate the role of SHLD2 (previously annotated as FAM35A and RINN2) as an effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ‐mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B cells. FAM35A accumulates at DSBs in a 53BP1‐, RIF1‐, and REV7‐dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and SHLD1 (previously annotated as C20orf196 and RINN3), which promotes NHEJ and limits HR. Together, these results establish SHLD2 as a novel effector of REV7 in controlling the decision‐making process during DSB repair.  相似文献   

18.
DNA end resection is a critical step in the repair of DNA double strand breaks. It controls the way the lesion is going to be repaired, thus its regulation has a great importance in maintaining genomic stability. In this review, we focus in recent discoveries in the field that point to a modulation of resection by RNA molecules and RNA-related proteins. Moreover, we aim to reconcile contradictory reports on the positive or negative effect of DNA:RNA hybrids in the resection process.  相似文献   

19.
Exogenous and endogenous damage to DNA is constantly challenging the stability of our genome. This DNA damage increase the frequency of errors in DNA replication, thus causing point mutations or chromosomal rearrangements and has been implicated in aging, cancer, and neurodegenerative diseases. Therefore, efficient DNA repair is vital for the maintenance of genome stability. The general notion has been that DNA repair capacity decreases with age although there are conflicting results. Here, we focused on potential age‐associated changes in DNA damage response and the capacities of repairing DNA single‐strand breaks (SSBs) and double‐strand breaks (DSBs) in human peripheral blood mononuclear cells (PBMCs). Of these lesions, DSBs are the least frequent but the most dangerous for cells. We have measured the level of endogenous SSBs, SSB repair capacity, γ‐H2AX response, and DSB repair capacity in a study population consisting of 216 individuals from a population‐based sample of twins aged 40–77 years. Age in this range did not seem to have any effect on the SSB parameters. However, γ‐H2AX response and DSB repair capacity decreased with increasing age, although the associations did not reach statistical significance after adjustment for batch effect across multiple experiments. No gender differences were observed for any of the parameters analyzed. Our findings suggest that in PBMCs, the repair of SSBs is maintained until old age, whereas the response to and the repair of DSBs decrease.  相似文献   

20.
Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification of proteins catalysed by Poly(ADP-ribose) polymerases (PARP). A wealth of recent advances in the biochemical and functional characterization of the DNA-dependent PARP family members have highlighted their key contribution in the DNA damage response network, the best characterized being the role of PARP1 and PARP2 in the resolution of single-strand breaks as part of the BER/SSBR process. How PARylation contributes to the repair of double-strand breaks is less well defined but has become recently the subject of significant research in the field. The aim of this review is to provide an overview of the current knowledge concerning the role of the DNA-activated PARP1, PARP2 and PARP3 in cellular response to double-strand breaks (DSB). In addition, we outline the biological significance of these properties in response to programmed DNA lesions formed during physiological processes such as antibody repertoire assembly and diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号