首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specificity of the transport mechanisms for pyruvate and lactate and their sensitivity to inhibitors were studied in L6 skeletal muscle cells. Trans- and cis-lactate effects on pyruvate transport kinetic parameters were examined. Pyruvate and lactate were transported by a multisite carrier system, i.e., by two families of sites, one with low affinity and high capacity (type I sites) and the other with high affinity and low capacity (type II). The multisite character of transport kinetics was not modified by either hydroxycinnamic acid (CIN) or p-chloromercuribenzylsulfonic acid (PCMBS), which exert different types of inhibition. The transport efficiency (TE) ratios of maximal velocity to the trans-activation dissociation constant (Kt) showed that lactate and pyruvate were preferentially transported by types I and II sites, respectively. The cis-lactate effect was observed with high Ki values for both sites. The trans-lactate effect on pyruvate transport occurred only on type I sites and exhibited an asymmetric interaction pattern (Kt of inward lactate > Kt of outward lactate). The inability of lactate to trans-stimulate type II sites suggests that intracellular lactate cannot recruit these sites. The high-affinity type II sites act as a specific pyruvate shuttle and constitute an essential relay for the intracellular lactate shuttle.  相似文献   

2.
We have investigated the symmetry of Na+-succinate cotransport in rabbit renal brush-border membrane vesicles. Succinate influx and efflux kinetics were measured under voltage-clamped conditions using [14C]succinate and a rapid filtration procedure. Both influx and efflux were Na+-dependent, saturable, temperature-sensitive, and influenced by the trans Na+ and succinate concentrations. The system was judged to be asymmetric, since the maximal velocity for influx was 3-fold higher than that for efflux, and trans Na+ inhibited influx more than efflux. This may be due to the asymmetrical insertion of the transporter in the brush-border membrane, which leads to differences in either the forward and backward translocation rates of the fully loaded carrier or the Na+ and succinate binding constants at the inner and outer faces of the membrane.  相似文献   

3.
The kinetics and specificity of L-lactate transport into cardiac muscle were studied during a single transit through the isolated perfused rabbit heart using a rapid (15 s) paired-tracer dilution technique. Kinetic experiments revealed that lactate influx was highly stereospecific and saturable with an apparent Kt = 19 +/- 6 mM and a Vmax = 8.4 +/- 1.5 mumol/min per g (mean +/- S.E., n = 14 hearts). At high perfusate concentrations (10 mM), the inhibitors alpha-cyano-4-hydroxycinnamate (Ki = 7.3 mM), pyruvate (Ki = 6.5 mM), acetate (Ki = 19.4 mM) and chloroacetate (Ki = 28 mM) reduced L-lactate influx, and Ki values were estimated assuming a purely competitive interaction of the inhibitors with the monocarboxylate carrier. The monocarboxylic acids [14C]pyruvate and [3H]acetate were themselves transported, and sarcolemmal uptakes of respectively 38 +/- 1% and 70 +/- 8% were measured relative to D-mannitol. Perfusion of hearts for 10-30 min with 0.15 or 1.5 microM glucagon increased myocardial lactate production and simultaneously inhibited tracer uptake of lactate, pyruvate and acetate. It is concluded that a stereospecific lactate transporter exhibiting an affinity for other substituted monocarboxylic acids is operative in the sarcolemmal plasma membrane of the rabbit myocardium.  相似文献   

4.
The efflux and exchange of beta-alanine were studied in synaptic plasma membrane vesicles from rat brain. The mechanism of beta-alanine translocation has been probed by comparing the ion dependence of net efflux to that of exchange. Dilution-induced efflux requires the simultaneous presence of internal sodium and chloride ions while influx is dependent on the presence of these two ions on the outside [Zafra, F., Aragón, M. C., Valdivieso, F. and Giménez, C. (1984) Neurochem Res. 9, 695-707]. These data show that the release of beta-alanine occurs via the carrier system and that it is cotransported with sodium and chloride ions. beta-Alanine efflux from the membrane vesicles is stimulated by external beta-alanine. This exchange does not require external sodium and chloride but it is dependent on the external concentration of beta-alanine. Half-maximal stimulation is obtained at a beta-alanine concentration similar to the Km for beta-alanine influx. Results of the direct measurements of the coupling of sodium and chloride to the transport of beta-alanine by using a kinetic approach allow us to propose a stoichiometry for the translocation cycle catalyzed by the beta-alanine transporter of three sodium ions and one chloride ion per beta-alanine zwitterion. To account for all the observed effects of external ions, beta-alanine concentrations and membrane potential on beta-alanine influx and efflux, a kinetic model of the Na+/Cl-/beta-alanine cotransport system is discussed.  相似文献   

5.
The kinetics of pyruvate transport across the isolated red blood cell membrane were studied by a simple and precise spectrophotometric method: following the oxidation of NADH via lactate dehydrogenase trapped within resealed ghosts. The initial rate of pyruvate entry was linear. Influx was limited by saturation at high pyruvate concentration. Pyruvate influx was greatly stimulated by increasing ionic strength in the outer but not the inner aqueous compartment. The Km ranged from 15.0 mM at mu = 0.05 to 3.7 mM at mu = 0.01, while the V went from 0.611 - 10(15) to 0.137 - 10(-15) mol - min-1 - ghost-1. Ionic strength was shown to affect the translocation step and not pyruvate binding. The energy of activation of pyruvate flux into resealed ghosts was 25 kcal/mol, similar to that found in intact red blood cells. Inhibitors of pyruvate influx included such anions as thiocyanate, chloride, bicarbonate, alpha-cyanocinnamate, salicylate and ketomalonate (but not acetate); noncompetitive inhibitors were phloretin, 1-fluoro-2,4-dinitrobenzene, 4-acetamido-4'-isothiocyanate-stilbene-2,2'-disulfonic acid and o-phenanthroline/CuSO4 mixtures. The last reagent, known to induce disulfide links in certain membrane proteins, blocked the ionic strength stimulation of pyruvate influx in this study.  相似文献   

6.
The kinetics and activation energy of entry of pyruvate and lactate into the erythrocyte were studied at concentrations below 4 and 15mM respectively. The Km and Vmax. values for both substrates are reported, and it is shown that pyruvate inhibits competitively with respect to lactate and vice versa. In both cases the Km for the carboxylate as a substrate was the same as its Ki as an inhibitor. Alpha-Cyano-4-hydroxycinnamate and its analogues inhibited the uptake of both lactate and pyruvate competitively. Inhibition was also produced by treatment of cells with fluorodinitrobenzene but not with the thiol reagents or Pronase. At high concentrations of pyruvate or lactate (20mM), uptake of the carboxylate was accompanied by an efflux of Cl-ions. This efflux of Cl- was inhibited by alpha-cyano-4-hydroxycinnamate and picrate and could be totally abolished by very low (less than 10 muM) concentrations of the inhibitor of Cl- transport, 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid. This inhibitor titrated out the chlordie efflux induced by pyruvate, bicarbonate, formate and fluoride, in each case total inhibition becoming apparent when approximately 1.2x10(6) molecules of inhibitor were present per erythrocyte, that is, about one inhibitor molecule per molecule of the Cl- carrier. Evan when Cl- efflux was totally blocked pyruvate and lactate uptake occurred. Kinetic evidence is presented which suggests that the Cl- carrier can transport pyruvate and lactate with a high Km and high Vmax., but that an additional carrier with a low Km and a low Vmax. also exists. This carrier catalyses the exchange of small carboxylate anions with intracellular lactate, is competitively inhibited by alpha-cyano-4-hydroxycinnamate and non-competitively inhibited by picrate. The Cl- carrier shows a reverse pattern of inhibition. It is concluded that net efflux of lactic acid from the cell must occur on the Cl- carrier and involve exchange with HCO3 - followed by loss of CO2. The low Km carrier might be used in pyruvate/lactate or acetoacetate/beta-hydroxybutyrate exchanges involved in transferring reducing power across the cell membrane. The possibility that the Cl- carrier exists in cells other than the erythrocyte is discussed. It is concluded that its presence in other cell membranes together with a low intracellular Cl- concentration would explain why the pH in the cytoplasm is lower than that of the blood, and why permeable carboxylate anions do not accumulate within the cell when added from outside.  相似文献   

7.
Mechanism of the melibiose porter in membrane vesicles of Escherichia coli   总被引:2,自引:0,他引:2  
D E Cohn  H R Kaback 《Biochemistry》1980,19(18):4237-4243
The melibiose transport system of Escherichia coli catalyzes sodium--methyl 1-thio-beta-D-galactopyranoside (TMG) symport, and the cation is required not only for respiration-driven active transport but also for binding of substrate to the carrier in the absence of energy and for carrier-mediated TMG efflux. As opposed to the proton--beta-galactoside symport system [Kaczorowski, G. J., & Kaback, H. R. (1979) Biochemistry 18, 3691], efflux and exchange of TMG occur at the same rate, implying that the rates of the two processes are limited by a common step, most likely the translocation of substrate across the membrane. Furthermore, the rate of exchange, as well as efflux, is influenced by imposition of a membrane potential (delta psi; interior negative), suggesting that the ternary complex between sodium, TMG, and the porter may bear a net positive charge. Consistently, energization of the vesicles leads to a large increase in the Vmax for TMG influx, with little or no change in the apparent Km of the process. It is proposed that the sodium gradient (Na+out < Na+in) and the delta psi (interior negative) may affect different steps in the overall mechanism of active TMG accumulation in the following manner: the sodium gradient causes an increased affinity for TMG on the outer surface of the membrane relative to the inside and the delta psi facilitates a reaction involved with the translocation of the positively charged ternary complex to the inner surface of the membrane.  相似文献   

8.
Influx of alpha-aminoisobutyric acid (AIB) and gamma-aminobutyric acid (GABA) by mouse cerebrum slices incubated with L-lactate or a mixture of succinate, L-malate, and pyruvate (SMP) as the energy source follows the phenomenological rate equation for influx from pyruvate and glucose media: v = Vmax/(1 + Kt/S) + kuS, where v is rate and S is concentration of amino acid. There are two kinetically distinct, parallel components for concentrative uptake, one saturable, and one unsaturable. Rates are less with lactate than with pyruvate and still less with SMP (only GABA was studied), disproving the hypotheses that lower rates with pyruvate compared to glucose are due to an abnormal redox state in the tissue or to a Krebs cycle unbalanced by input at only one point. The carriers for AIB and GABA are qualitatively different. In lactate medium the capacity of each AIB carrier is unchanged but its affinity is reduced to one-third. In lactate and SMP media, the capacity of the saturable GABA carrier is diminished although its affinity is increased. Rates from these media with added glucose or a glucose analog confirm that amino acid and glucose fluxes are not coupled.  相似文献   

9.
The transmembrane equilibration of radiolabeled uridine was measured by rapid kinetic techniques in human erythrocytes from freshly drawn blood and in the same cells during conventional storage of the blood as well as in cells from outdated blood. Our results confirm earlier reports that the maximum velocity of uridine equilibrium exchange (Vee) at 25 degrees C is about 30% lower in outdated than fresh red cells, whereas the opposite is the case for the Michaelis-Menten constant for equilibrium exchange (Kee), and that maximum zero-trans efflux (Vzt21) is about 4-times greater than maximum zero-trans influx (Vzt12) in outdated cells (directional asymmetry), whereas they are about the same in fresh red cells. At 25 degrees C, the nucleoside-loaded carrier of fresh cells moves on the average 6-times more rapidly than the empty carrier, whereas the differential mobility of loaded and empty carrier from outdated cells is about 15-fold. Our results also show that greater efflux than influx in outdated cells is not due to a general leakiness of outdated cells, that the differences in kinetic properties of the transporter developed during the first two weeks of blood storage and that the differences are greatly amplified when transport is measured at 5 degrees C rather than 25 degrees C. At 5 degrees C, the loaded carrier from outdated red cells moves about 325-times more rapidly than the empty carrier and maximum zero-trans efflux exceeds maximum zero-trans influx about 14-times, whereas the transport of fresh cells exhibits directional symmetry just as at 25 degrees C. The changes in kinetic properties of transport induced by temperature and storage are probably related to structural alterations in the plasma membrane and suggest that the operation of carrier is subject to modification by the membrane environment. Other results show that the kinetics of the sugar transport of human red cells is not affected in the same manner by blood storage as those of the nucleoside transporter.  相似文献   

10.
The kinetic properties of the carrier-mediated transport of 3,5,3'-triiodo-L-thyronine (T3) in washed rat erythrocytes were investigated (1) by studying the effects of trans unlabelled T3 on influx and efflux of labelled substrate and (2) by testing some predictions of the theory of Lieb and Stein [1974) Biochim. Biophys. Acta 373, 165-177). The carrier was trans-inhibited by T3 on both sides of the membrane. Under zero-trans conditions, the carrier displayed asymmetrical properties, the Michaelis constant and the maximal velocity being more than 6-times higher for influx than for efflux. Under equilibrium-exchange conditions, the Michaelis constant was lower than the zero-trans values, as expected when trans-inhibition occurs. This kinetic behaviour is consistent with a carrier which is accessible to T3 simultaneously from both sides of the erythrocyte membrane.  相似文献   

11.
The efflux and exchange of glycine were studied in plasma membrane vesicles isolated from cultured glioblastoma cells. The mechanism of glycine translocation has been probed by comparing the ion dependence of net efflux to that of exchange. Dilution-induced efflux requires the simultaneous presence of internal sodium and chloride, while influx is dependent on the presence of these two ions on the outside (Zafra, F. and Giménez, C. (1986) Brain Res. 397, 108-116). Glycine efflux from the membrane vesicles is stimulated by external glycine, this exchange being dependent on external sodium, but not on external chloride. The parallelism observed in influx and efflux processes suggests that glycine is translocated in both directions across the membrane, probably by interacting with the carrier. To account for all the observed effects of external ions, glycine concentrations and membrane potential on glycine influx and efflux, a kinetic model of the Na+/Cl-/glycine cotransport system is discussed.  相似文献   

12.
A two-site model for sodium transport in human erythrocytes   总被引:1,自引:0,他引:1  
A kinetic model has been proposed for human erythrocytes to account for the responses of sodium transport to alterations in the extracellular sodium concentration in the presence and absence of potassium. The proposed model characterizes the movement of sodium from the outer surface of the erythrocyte membrane to the inner surface in terms of a carrier which has two sites with differing affinities for sodium ions.  相似文献   

13.
A mechanism for Na/Ca transport   总被引:12,自引:6,他引:6       下载免费PDF全文
  相似文献   

14.
15.
Sodium pump-catalyzed sodium-sodium exchange associated with ATP hydrolysis   总被引:2,自引:0,他引:2  
Inside-out red cell membrane vesicles have been used to study sodium interactions with the ATP-dependent sodium pump at sites accessible to both membrane surfaces. ATP-dependent 22Na+ influx (equivalent to efflux from cells) shows sigmoid dependence on extravesicular Na+ concentration. This is observed both in the absence of intravesicular cations and in the presence of intravesicular K or Rb ions. The kinetic behavior is similar to that observed earlier with intact cells, (Garay, R. P., and Garrahan, P. J. (1973) J. Physiol. (Lond.) 231, 297-325) and is consistent with a ratio of close to three Na ions transported per molecule of ATP hydrolyzed. With vesicles having relatively high intravesicular sodium concentration, (approximately 50 mM NaCl), the sodium pump effects an ATP-dependent sodium efflux coupled to sodium influx and to strophanthidin-sensitive ATP hydrolysis. The influx:efflux stoichiometry is approximately 1:1, and the influx:ATP hydrolysis ratio is close to 3. This ATP-dependent exchange has a higher affinity for vanadate than ATP plus ADP-dependent sodium exchange. It is concluded that this sodium-sodium exchange mode resembles sodium-potassium exchange whereby intravesicular sodium, i.e. sodium at the extracellular surface, at relatively high concentration, behaves like potassium.  相似文献   

16.
Entry of beta-hydroxybutyrate into erythrocytes and thymocytes is facilitated by a carrier (C), as judged from temperature dependence, saturation kinetics, stereospecificity, competition with lactate and pyruvate, and inhibition by moderate concentrations of methylisobutylxanthine, phloretin, or alpha-cyanocinnamate. We studied the dependence of influx and efflux on internal and external pH and [beta-hydroxybutyrate]. Lowering external pH from 8.0 to 7.3 to 6.6 enhanced influx into erythrocytes by lowering entry Km from 29 to 16 to 10 mM, entry V being independent of external pH. Lowering external pH inhibited efflux. At low external pH, external beta-hydroxybutyrate enhanced efflux slightly. At high external pH, external beta-hydroxybutyrate inhibited efflux. Internal acidification inhibited influx and internal alkalization enhanced influx. Internal beta-hydroxybutyrate (betaHB) enhanced influx more in acidified than alkalized cells. These data are compatible with coupled betaHB-/OH- exchange, betaHB- and OH- competing for influx, C:OH- moving faster than C: betaHB-, empty C being immobile. They are also compatible with coupled betaHB-/H+ copermeation, empty C moving inward faster than H+:C:betaHB-, H+:C being immobile, and C:betaHB- (without H+) being so unstable as not to be formed in significant amounts (relative to C, H+:C, and H+:C:betaHB-).  相似文献   

17.
L-lactate transport in Ehrlich ascites-tumour cells.   总被引:10,自引:0,他引:10       下载免费PDF全文
Ehrlich ascites-tumour cells were investigated with regard to their stability to transport L-lactate by measuring either the distribution of [14C]lactate or concomitant H+ ion movements. The movement of lactate was dependent on the pH difference across the cell membrane and was electroneutral, as evidenced by an observed 1:1 antiport for OH- ions or 1:1 symport with H+ ions. 2. Kinetic experiments showed that lactate transport was saturable, with an apparent Km of approx. 4.68 mM and a Vmax. as high as 680 nmol/min per mg of protein at pH 6.2 and 37 degrees C. 3. Lactate transport exhibited a high temperature dependence (activation energy = 139 kJ/mol). 4. Lactate transport was inhibited competitively by (a) a variety of other substituted monocarboxylic acids (e.g. pyruvate, Ki = 6.3 mM), which were themselves transported, (b) the non-transportable analogues alpha-cyano-4-hydroxycinnamate (Ki = 0.5 mM), alpha-cyano-3-hydroxycinnamate (Ki = 2mM) and DL-p-hydroxyphenyl-lactate (Ki = 3.6 mM) and (c) the thiol-group reagent mersalyl (Ki = 125 muM). 5. Transport of simple monocarboxylic acids, including acetate and propionate, was insensitive to these inhibitors; they presumably cross the membrane by means of a different mechanism. 6. Experiments using saturating amounts of mersalyl as an "inhibitor stop" allowed measurements of the initial rates of net influx and of net efflux of [14C]lactate. Influx and efflux of lactate were judged to be symmetrical reactions in that they exhibited similar concentration dependence. 7. It is concluded that lactate transport in Ehrlich ascites-tumour cells is mediated by a carrier capable of transporting a number of other substituted monocarboxylic acids, but not unsubstituted short-chain aliphatic acids.  相似文献   

18.
The effects of exchangeable ions and pH on the efflux of pyruvate from preloaded mitochondria are reported. Efflux obeys first-order kinetics, and the stimulation of efflux by exchangeable ions such as acetoacetate and lactate obeys Michaelis--Menten kinetics. The apparent Km value +/- S.E. for acetoacetate was 0.56 +/- 0.14 mM (n = 5) and that for lactate 12.3 +/- 2.3 mM (n = 6). The Vmax. values +/- S.E. at 0 degrees C were 16.2 +/- 2.0 and 21.9 +/- 2.7 nmol/min per mg of protein. The exchange of a variety of other substituted monocarboxylates was also studied. Efflux was also stimulated by increasing the external pH. The data gave a pK for the transport process of 8.35 and a Vmax. of 3.31 +/- 0.14 nmol/min per mg. The similarity of the Vmax. values for various exchangeable ions but the difference of this from the Vmax. in the absence of exchangeable ions may indicate that transport of pyruvate occurs with H+ and not in exchange for an OH- ion. The inhibition of transport by alpha-cyano-4-hydroxycinnamate took several seconds to reach completion at 0 degrees C. It is proposed that inhibition occurs by binding to the substrate site and subsequent reaction with an -SH group on the inside of the membrane. The inhibitor can be displaced by substrates that can also enter the mitochondria independently of the carrier and so compete with the inhibitor for the substrate-binding site on the inside of the membrane. A mechanism for transport is proposed that invokes a transition state of pyruvate involving addition of an -SH group to the 2-carbon of pyruvate. Evidence is presented that suggests that ketone bodies may cross the mitochondrial membrane either on the carrier or by free diffusion. The physiological involvement of the carrier in ketone-body metabolism is discussed. The role of ketone bodies and pH in the physiological regulation of pyruvate transport is considered.  相似文献   

19.
The properties of proton solute symport have been studied inStreptococcus cremoris, Rhodopseudomonas sphaeroides andEscherichia coli. In the homolactic fermentative organismS. cremoris the efflux of lactate is a membrane proteinmediated process, which can lead to the generation of a proton motive force. These observations support the energy-recycling model that postulates the generation of metabolic energy by end-product efflux. Studies with oxidants and reductants and specific dithiol reagents inE. coli membrane vesicles demonstrated the presence of two redox-sensitive dithiol-disulphide groups in the transport proteins of proline and lactose. The redox state of these groups is controlled by the redox potential of the environment and by the proton motive force. One redox-sensitive group is located at the inner surface, the other at the outer surface of the membrane. InRps. sphaeroides andE. coli the activity of several transport proteins depends on the activity of the electron transfer systems. On the basis of these results a redox model for proton solute transport coupled in parallel to the electron transfer system is postulated.  相似文献   

20.
The stoichiometric coupling mechanism of the membrane potential (delta psi) in the reaction of H+/proline symport was investigated kinetically, using cytoplasmic membrane vesicles of the proline carrier-overproducing strain of Escherichia coli MinS/ pLC4 -45. When a delta psi was imposed across the cytoplasmic membrane by respiration, the Michaelis constant of transport (Kt) was lowered to about 1 microM, which was 2 orders of magnitude smaller than that of passive influx and efflux, and the maximum velocity (Vmax) was concomitantly enhanced as an exponential function of delta psi. Thermodynamically, the carrier translocated proline with a stoichiometry of 2 mol of protons versus 1 mol of substrate when driven by a delta psi at pH 8.0. Data on the delta psi dependence of Vmax of proline transport could be explained quantitatively by the Geck-Heinz hypothesis (Geck, P., and Heinz, E. (1976) Biochim, Biophys. Acta 443, 49-63). A symmetrical model of the 2H+/proline symport via formation of a carrier/H+/substrate (CH+H+S) intermediate is proposed. In this model, the effect of delta psi on the Kt was resolved as stimulation of formation of a transport intermediate, whereas the effect of delta psi on the Vmax was explained by enhancement of translocation of loaded carriers between the two sides of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号