首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Nuclear accumulation of the serum response factor coactivator MAL/MKL1 is controlled by its interaction with G-actin, which results in its retention in the cytoplasm in cells with low Rho activity. We previously identified actin mutants whose expression promotes MAL nuclear accumulation via an unknown mechanism. Here, we show that actin interacts directly with MAL in vitro with high affinity. We identify a further activating mutation, G15S, which stabilises F-actin, as do the activating actins S14C and V159N. The three mutants share several biochemical properties, but can be distinguished by their ability to bind cofilin, ATP and MAL. MAL interaction with actin S14C is essentially undetectable, and that with actin V159N is weakened. In contrast, actin G15S interacts more strongly with MAL than the wild-type protein. Strikingly, the nuclear accumulation of MAL induced by overexpression of actin S14C is substantially dependent on Rho activity and actin treadmilling, while that induced by actin G15S expression is not. We propose a model in which actin G15S acts directly to promote MAL nuclear entry.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
The small GTPase RhoA controls activity of serum response factor (SRF) by inducing changes in actin dynamics. We show that in PC12 cells, activation of SRF after serum stimulation is RhoA dependent, requiring both actin polymerization and the Rho kinase (ROCK)-LIM kinase (LIMK)-cofilin signaling pathway, previously shown to control F-actin turnover. Activation of SRF by overexpression of wild-type LIMK or ROCK-insensitive LIMK mutants also requires functional RhoA, indicating that a second RhoA-dependent signal is involved. This is provided by the RhoA effector mDia: dominant interfering mDia1 derivatives inhibit both serum- and LIMK-induced SRF activation and reduce the ability of LIMK to induce F-actin accumulation. These results demonstrate a role for LIMK in SRF activation, and functional cooperation between RhoA-controlled LIMK and mDia effector pathways.  相似文献   

18.
19.
20.
A major factor in profilin regulation of actin cytoskeletal dynamics is its facilitation of G-actin nucleotide exchange. However, the mechanism of this facilitation is unknown. We studied the interaction of yeast (YPF) and human profilin 1 (HPF1) with yeast and mammalian skeletal muscle actins. Homologous pairs (YPF and yeast actin, HPF1 and muscle actin) bound more tightly to one another than heterologous pairs. However, with saturating profilin, HPF1 caused a faster etheno-ATP exchange with both yeast and muscle actins than did YPF. Based on the -fold change in ATP exchange rate/K(d), however, the homologous pairs are more efficient than the heterologous pairs. Thus, strength of binding of profilin to actin and nucleotide exchange rate are not tightly coupled. Actin/HPF interactions were entropically driven, whereas YPF interactions were enthalpically driven. Hybrid yeast actins containing subdomain 1 (sub1) or subdomain 1 and 2 (sub12) muscle actin residues bound more weakly to YPF than did yeast actin (K(d) = 2 microm versus 0.6 microm). These hybrids bound even more weakly to HPF than did yeast actin (K(d) = 5 microm versus 3.2 microm). sub1/YPF interactions were entropically driven, whereas the sub12/YPF binding was enthalpically driven. Compared with WT yeast actin, YPF binding to sub1 occurred with a 5 times faster k(off) and a 2 times faster k(on). sub12 bound with a 3 times faster k(off) and a 1.5 times slower k(on). Profilin controls the energetics of its interaction with nonhybrid actin, but interactions between actin subdomains 1 and 2 affect the topography of the profilin binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号