首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of trisubstituted naphthalimides have been synthesized and evaluated as telomeric G-quadruplex ligands by biophysical methods. Affinity for telomeric G-quadruplex AGGG(TTAGGG)(3) binding was first screened by fluorescence titrations. Subsequently, the interaction of the telomeric G-quadruplex with compounds showing the best affinity has been studied by isothermal titration calorimetry and UV-melting experiments. The two best compounds of the series tightly bind the telomeric quadruplex with a 2:1 drug/DNA stoichiometry. These derivatives have been further evaluated for their ability to inhibit telomerase by a TRAP assay and their pharmacological properties by treating melanoma (M14) and human lung cancer (A549) cell lines with increasing drug concentrations. A dose-dependent inhibition of cell proliferation was observed for all cellular lines during short-term treatment.  相似文献   

2.
A series of tri- and tetra-substituted naphthalene diimides have been designed and synthesized. Several compounds show exceptional affinity for telomeric G-quadruplex DNA in classical and competition FRET assays and SPR studies. They inhibit telomerase in the TRAP assay, and show potent senescence-based short-term anti-proliferative effects on MCF7 and A549 cancer cell lines, and localize in the nucleus and particularly the nucleolus of MCF7 cells.  相似文献   

3.
The human telomeric DNA can form four-stranded structures: the G-rich strand adopts a G-quadruplex conformation stabilized by G-quartets and the C-rich strand may fold into an I-motif based on intercalated C.C(+) base pairs. There is intense interests in the design and synthesis of compounds which can target telomeric DNA and inhibit the telomerase activity. Here we report the thermodynamic studies of the two newly synthesized terbium-amino acid complexes bound to the human telomeric G-quadruplex and I-motif DNA which were studied by means of UV-Visible, DNA meltings, fluorescence and circular dichroism. These two complexes can bind to the human telomeric DNA and have shown different features on DNA stability, binding stoichiometry, and sequence-dependent fluorescence enhancement. To our knowledge, this is the first report to show terbium-amino acid complexes can interact with the human telomeric DNA.  相似文献   

4.
A series of 4,5-di-substituted acridones have been designed and synthesized. Several compounds show high affinity for telomeric G-quadruplex DNA in classical and competition FRET assays, together with low duplex DNA affinity, although they do not show activity in a telomerase assay or evidence of telomere shortening. They have low toxicity against a panel of cancer cell lines and a normal human fibroblast line, and produce potent senescence-based long-term growth arrest in the MCF7 and A549 cancer cell lines.  相似文献   

5.
Dai J  Carver M  Yang D 《Biochimie》2008,90(8):1172-1183
Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG). Compounds that can stabilize the intramolecular DNA G-quadruplexes formed in the human telomeric sequence have been shown to inhibit the activity of telomerase and telomere maintenance, thus the telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. Knowledge of intramolecular human telomeric G-quadruplex structure(s) formed under physiological conditions is important for structure-based rational drug design and thus has been the subject of intense investigation. This review will give an overview of recent progress on the intramolecular human telomeric G-quadruplex structures formed in K(+) solution. It will also give insight into the structure polymorphism of human telomeric sequences and its implications for drug targeting.  相似文献   

6.
Telomerase is responsible for the immortal phenotype of cancer cells and telomerase inhibition may specifically target cancer cell proliferation. Ligands able to selectively bind to G-quadruplex telomeric DNA have been considered as telomerase inhibitors but their mechanisms of action have often been deduced from a non-quantitative telomerase activity assay (TRAP assay) that involves a PCR step and that does not provide insight on the mechanism of inhibition. Furthermore, quadruplex ligands have also been shown to exert their effects by affecting association of telomere binding proteins with telomeres. Here, we use quantitative direct telomerase activity assays to evaluate the strength and mechanism of action of hydrosoluble perylene diimides (HPDIs). HPDIs contain a perylene moiety and different numbers of positively charged side chains. Side chain features vary with regard to number and distances of the charges. IC50 values of HPDIs were in the low micromolar (0.5–5 μM) range depending on the number and features of the side chains. HPDIs having four side chains emerged as the best compounds of this series. Analysis of primer elongation products demonstrated that at low HPDI concentrations, telomerase inhibition involved formation of telomeric G-quadruplex structures, which inhibited further elongation by telomerase. At high HPDI concentrations, telomerase inhibition occurred independently of G-quadruplex formation of the substrate. The mechanism of action of HPDIs and their specific binding to G-quadruplex DNA was supported by PAGE analysis, CD spectroscopy and ESI-MS. Finally, competition Telospot experiments with duplex DNA indicated specific binding of HPDIs to the single-stranded telomeric substrates over double stranded DNA, a result supported by competitive ESI-MS. Altogether, our results indicate that HPDIs act by stabilizing G-quadruplex structures in single-stranded telomeric DNA, which in turn prevents repeat addition processivity of telomerase.  相似文献   

7.
Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG). The formation and stabilization of DNA G-quadruplexes in the human telomeric sequence have been shown to inhibit the activity of telomerase, thus the telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. However, knowledge of the intact human telomeric G-quadruplex structure(s) formed under physiological conditions is a prerequisite for structure-based rational drug design. Here we report the folding structure of the human telomeric sequence in K+ solution determined by NMR. Our results demonstrate a novel, unprecedented intramolecular G-quadruplex folding topology with hybrid-type mixed parallel/antiparallel G-strands. This telomeric G-quadruplex structure contains three G-tetrads with mixed G-arrangements, which are connected consecutively with a double-chain-reversal side loop and two lateral loops, each consisting of three nucleotides TTA. This intramolecular hybrid-type telomeric G-quadruplex structure formed in K+ solution is distinct from those reported on the 22 nt Tel22 in Na+ solution and in crystalline state in the presence of K+, and appears to be the predominant conformation for the extended 26 nt telomeric sequence Tel26 in the presence of K+, regardless of the presence or absence of Na+. Furthermore, the addition of K+ readily converts the Na+-form conformation to the K+-form hybrid-type G-quadruplex. Our results explain all the reported experimental data on the human telomeric G-quadruplexes formed in the presence of K+, and provide important insights for understanding the polymorphism and interconversion of various G-quadruplex structures formed within the human telomeric sequence, as well as the effects of sequence and cations. This hybrid-type G-quadruplex topology suggests a straightforward pathway for the secondary structure formation with effective packing within the extended human telomeric DNA. The hybrid-type telomeric G-quadruplex is most likely to be of pharmacological relevance, and the distinct folding topology of this G-quadruplex suggests that it can be specifically targeted by G-quadruplex interactive small molecule drugs.  相似文献   

8.
9.
Thirteen compounds with diverse chemical structures have been identified as selective telomeric G-quadruplex-binding ligands through screening the NCI Diversity Set II, the NCI Natural Products Set II and the NCI Mechanistic Diversity Set libraries containing a total of 2307 members against a human telomeric G-quadruplex using a FRET-based DNA melting assay. These compounds show significant selectivity towards a telomeric G-quadruplex compared to duplex DNA, fall within a molecular weight range of 327-533, and are generally consistent with the Lipinski Rule of Five for drug-likeness. Thus they provide new chemical scaffolds for the development of novel classes of G-quadruplex-targeting agents.  相似文献   

10.
A DNA polymerase stop assay for G-quadruplex-interactive compounds.   总被引:7,自引:6,他引:1       下载免费PDF全文
We have developed and characterized an assay for G-quadruplex-interactive compounds that makes use of the fact that G-rich DNA templates present obstacles to DNA synthesis by DNA polymerases. Using Taq DNA polymerase and the G-quadruplex binding 2, 6-diamidoanthraquinone BSU-1051, we find that BSU-1051 leads to enhanced arrest of DNA synthesis in the presence of K+by stabilizing an intramolecular G-quadruplex structure formed by four repeats of either TTGGGG or TTAGGG in the template strand. The data provide additional evidence that BSU-1051 modulates telomerase activity by stabilization of telomeric G-quadruplex DNA and point to a polymerase arrest assay as a sensitive method for screening for G-quadruplex-interactive agents with potential clinical utility.  相似文献   

11.
Discovery of potent and selective ligands for telomeric G-quadruplex DNA is a challenging work. Through a combination approach of pharmacophore model construction, model validation, database virtual screening, chemical synthesis and interaction evaluation, we discovered and confirmed triaryl-substituted imidazole TSIZ01 to be a new telomeric G-quadruplex ligand with potent binding and stabilizing activity to G-quadruplex DNA, as well as a 8.7-fold selectivity towards telomeric G-quadruplex DNA over duplex DNA.  相似文献   

12.
The interaction of berberine and its 9-substituted derivatives with human telomeric DNA d[G(3)(T(2)AG(3))(3)](telo21) has been investigated via CD spectroscopy, fluorescence spectroscopy, PCR-stop assay, competitive dialysis, and telomerase repeat amplification protocol (TRAP) assay. The results indicated that these semisynthesized compounds could induce and stabilize the formation of anti-parallel G-quadruplex of telomeric DNA in the presence or absence of metal cations. Compared with berberine, the 9-substituted derivatives exhibit stronger binding affinity with G-quadruplex and higher inhibitory activity for telomerase. Introduction of a side chain with proper length of methylene and terminal amino group to the 9-position of berberine would significantly strengthen the binding affinity with G-quadruplex, resulting in increasing inhibitory effects on the amplification of telo21 DNA and on the telomerase activity.  相似文献   

13.
Human telomerase inhibition by substituted acridine derivatives.   总被引:8,自引:0,他引:8  
A series of 3,6-disubstituted acridine derivatives have been rationally designed as telomerase inhibitors. They have been designed on the basis that inhibition of telomerase occurs by stabilising G-quadruplex structures formed by the folding of telomeric DNA. The most potent inhibitors have IC50 values against telomerase of between 1.3 and 8 microM, comparable to their cytotoxicity in ovarian cancer cell lines.  相似文献   

14.
15.
Selective recognition and alkylation of G-quadruplex oligonucleotides has been achieved by substituted naphathalene diimides (NDIs) conjugated to engineered phenol moieties by alkyl-amido spacers with tunable length and conformational mobility. FRET-melting assays, circular dichroism titrations and gel electrophoresis analysis have been carried out to evaluate both reversible stabilization and alkylation of the G-quadruplex. The NDIs conjugated to a quinone methide precursor (NDI-QMP) and a phenol moiety by the shortest alkyl-amido spacer exhibited a planar and fairly rigid geometry (modelled by DFT computation). They were the best irreversible and reversible G-quadruplex binders, respectively. The above NDI-QMP was able to alkylate the telomeric G-quadruplex DNA in the nanomolar range and resulted 100-1000 times more selective on G-quadruplex versus single- and double-stranded oligonucleotides. This compound was also the most cytotoxic against a lung carcinoma cell line.  相似文献   

16.
Telomeric repeat-containing RNA, a non-coding RNA molecule, has recently been found in mammalian cells. The detailed structural features and functions of the telomeric RNA at human chromosome ends remain unclear, although this RNA molecule may be a key component of the telomere machinery. In this study, using model human telomeric DNA and RNA sequences, we demonstrated that human telomeric RNA and DNA oligonucleotides form a DNA-RNA G-quadruplex. We next employed chemistry-based oligonucleotide probes to mimic the naturally formed telomeric DNA-RNA G-quadruplexes in living cells, suggesting that the process of DNA-RNA G-quadruplex formation with oligonucleotide models of telomeric DNA and RNA could occur in cells. Furthermore, we investigated the possible roles of this DNA-RNA G-quadruplex. The formation of the DNA-RNA G-quadruplex causes a significant increase in the clonogenic capacity of cells and has an effect on inhibition of cellular senescence. Here, we have used a model system to provide evidence about the formation of G-quadruplex structures involving telomeric DNA and RNA sequences that have the potential to provide a protective capping structure for telomere ends.  相似文献   

17.
Human chromosomes terminate with telomeres, which contain double-stranded G-rich, repetitive DNA followed by a single-stranded overhang of the G-rich sequence. Single-stranded oligonucleotides containing G-rich telomeric repeats have been observed in vitro to fold into a variety of G-quadruplex topologies depending on the solution conditions. G-quadruplex structures are notable in part because G-quadruplex ligands inhibit both the enzyme telomerase and other telomere-binding proteins. Because telomerase is required for growth by the majority of cancers, G-quadruplex-stabilizing ligands have become an attractive platform for anticancer drug discovery. Here, we present the preparation and biochemical activities of a novel series of 3,6-disubstituted acridine dimers modeled after the known G-quadruplex ligand BRACO19. These BRACO19 Analog Dimer (BAD) ligands were shown to bind to human telomeric DNA and promote the formation of intramolecular G-quadruplexes in the absence of monovalent cations. As expected, the BAD ligands bound to telomeric DNA with a 1:1 stoichiometry, whereas the parent compound BRACO19, a monomer, bound with a 2:1 stoichiometry. The BAD ligands exhibited potent inhibition of human telomerase with IC50 values similar to or lower than those of BRACO19. Furthermore, the BAD ligands displayed greater potency in the inhibition of hPot1 and increased selectivity for G-quadruplex DNA when compared to BRACO19. Collectively, these experiments support the hypothesis that there is an increased potency and selectivity to be gained in the design of G-quadruplex-stabilizing agents that incorporate multiple interactions.  相似文献   

18.
A series of 1,8-dipyrazolcarbazole (DPC) derivatives (6a-6d, 7a-7d) designed as G-quadruplex ligands have been synthesized and characterized. The FRET-melting and SPR results showed that the DPC derivatives could well recognize G-quadruplex with strong discrimination against the duplex DNA. In addition, the DPC derivatives showed much stronger stabilization activities and binding affinities for c-myc G-quadruplex rather than telomeric G-quadruplex. Therefore, their interactions with c-myc G-quadruplex were further explored by means of CD spectroscopy, PCR-stop assay, and molecular modeling. In cellular studies, all compounds showed strong cytotoxicity against cancer cells, while weak cytotoxicity towards normal cells. RT-PCR assay showed that compound 7b could down-regulate c-myc gene expression in Ramos cell line, while had no effect on c-myc expression in CA46 cell line with NHE III(1) element removed, indicating its effective binding with G-quadruplex on c-myc oncogene in vivo.  相似文献   

19.
富含鸟嘌呤的单链DNA序列可以缠绕折叠形成G- 四链体结构。人类基因组中有36,000 个以上的DNA 序列有潜力生成 G-四链体,如端粒末端重复序列,以及c-myc、c-kit、bcl-2 等原癌基因启动子区域。G-四链体是由四个鸟嘌呤之间通过Hoogsteen 氢键形成G-四分体,相邻的G-四分体再通过π-π 堆积作用,由糖- 磷酸骨架相连而成。G- 四链体DNA 的形成有着重要的生 物学意义,它和相关基因表达水平密切相关,诱导和稳定G- 四链体结构就有可能抑制癌基因的转录和表达,引起肿瘤细胞生物 学功能的紊乱,从而抑制肿瘤细胞的增殖。G-四链体结构作为新的抗肿瘤药物靶点引起了科学家的广泛关注,能够稳定G- 四链 体结构的配体包括二酰胺蒽醌类、苝类、阳离子卟啉类、金属配合物和天然产物等。本文对近年来以G-四链体为靶点的配体的研 究进行了综述。  相似文献   

20.
Human replication protein A unfolds telomeric G-quadruplexes   总被引:6,自引:4,他引:2  
G-quadruplex structures inhibit telomerase activity and must be disrupted for telomere elongation during S phase. It has been suggested that the replication protein A (RPA) could unwind and maintain single-stranded DNA in a state amenable to the binding of telomeric components. We show here that under near-physiological in vitro conditions, human RPA is able to bind and unfold G-quadruplex structures formed from a 21mer human telomeric sequence. Analyses by native gel electrophoresis, cross-linking and fluorescence resonance energy transfer indicate the formation of both 1:1 and 2:1 complexes in which G-quadruplexes are unfolded. In addition, quadruplex opening by hRPA is much faster than observed with the complementary DNA, demonstrating that this protein efficiently unfolds G-quartets. A two-step mechanism accounting for the binding of hRPA to G-quadruplexes is proposed. These data point to the involvement of hRPA in regulation of telomere maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号