首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In human fibrinogen Rouen, which is the origin of a bleedin disorder, a single amino acid is mutated from Gly(12) to Val(12) in the A alpha chain. In the previous paper of this series, this mutation was predicted to disrupt the structure of fibrinogen-like peptides bound to bovine thrombin. The structural basis of this bleeding disorder has been further assessed by studying the interaction of the following Val(12)-substituted human fibrinogen-like peptides with bovine thrombin in aqueous solution by use of two-dimensional NMR spectroscopy (including TRNOE): Ala-Asp-Ser-Gly-Glu-Gly-Asp(7)-Phe-Leu-Ala- Glu-Val(12)-Gly-Gly-Val-Arg(16)-Gly(17)-Pro-Arg-Val-NH2 (F16), Ala-Asp-Ser-Gly-Glu-Gly-Asp(7)-Phe-Leu-Ala-Glu-Val(12)-Gly-Gly-Val- Arg(16) (tF16), Ala-Asp-Ser-Gly-Glu-Cys(Acm)-Asp(7)-Phe-Leu-Ala-Glu-Val(12)-Gly-Gly-Val- Arg(16)-Gly(17)-Pro-Arg-Val-Cys(Acm)-NH2 (F17), and Ala-Asp-Ser-Gly-Glu-Cys(Acm)-Asp(7)-Phe-Leu-Ala-Glu-Val(12)-Gly-Gly- Val-Arg(16) (tF17). Binding of thrombin to peptides F16 and F17, and hence to tF16 and tF17 as a result of the cleavage of the Arg(16)-Gly(17) peptide bond, broadens the proton resonances of residues Asp(7) to Arg(16), suggesting that thrombin interacts specifically with this sequence of residues. Medium- and long-range TRNOE's were observed between the NH proton of Asp(7) and the C beta H protons of Ala(10) and between the ring protons of Phe(8) and the C gamma H protons of Val(12) and Val(15) in complexes of thrombin with both tF16 and tF17. A strong TRNOE, in peptides tF16 and tF17, between the C beta H protons of Glu(11) and the backbone NH proton of Val(12) was also observed. However, TRNOE's between the ring protons of Phe(8) and the C alpha H protons of Gly(14) and between the C alpha H proton of Glu(11) and the NH proton of Gly(13), previously observed in the complex of thrombin with FpA, were absent in both peptides tF16 and tF17. From incorporation of TRNOE information into distance geometry calculations, Val(12) was found to disrupt the type II beta-turn involving Glu(11) and Gly(12) that is present in complexes of thrombin with normal fibrinogen-like peptides. The positions of Gly(13) and Gly(14) in the complex are also displaced, relative to the aromatic ring of Phe(8), by the Val(12) substitution. This altered geometry presumably affects the positioning of the Arg(16)-Gly(17) bond in the active site of thrombin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The interaction of the following human fibrinogen-like peptides with bovine thrombin was studied by use of one- and two-dimensional NMR techniques in aqueous solution: Ala(1)-Asp-Ser-Gly-Glu-Gly-Asp-Phe(8)-Leu-Ala-Glu-Gly-Gly-Gly-Val-Arg(16 )- Gly(17)-Pro-Arg(19)-Val(20)-Val-Glu-Arg (F10), residues 1-16 of F10 (fibrinopeptide A), residues 17-23 of F10 (F12), residues 1-20 of F10 (F13), residues 6-20 of F10 with Arg(16) replaced by a Gly residue (F14), and residues 6-19 of F10 with Arg(16) replaced by a Leu residue (F15). At pH 5.3 and 25 degrees C, the Arg(16)-Gly(17) peptide bonds of both peptides F10 and F13 were cleaved instantaneously in the presence of 0.6 mM thrombin, whereas the cleavage of the Arg(19)-Val(20) peptide bonds in peptides F12, F13, and F14 took over 1 h for completion. On the basis of observations of line broadening, fibrinopeptide A was found to bind to thrombin. While resonances from residues Ala(1)-Glu(5) were little affected, binding of fibrinopeptide A to thrombin caused significant line broadening of NH and side-chain proton resonances within residues Asp(7)-Arg(16). There is a chain reversal within residues Asp(7)-Arg(16) such that Phe(8) is brought close to the Arg(16)-Gly(17) peptide bond in the thrombin-peptide complex, as indicated by transferred NOEs between the aromatic ring protons of Phe(8) and the C alpha H protons of Gly(14) and the C gamma H protons of Val(15). A similar chain reversal was obtained in the isolated peptide F10 at a subzero temperature of -8 degrees C. The titration behavior of Asp(7) in peptide F13 does not deviate from that of the reference peptide, N-acetyl-Asp-NHMe at both 25 and -8 degrees C, indicating that no strong interaction exists between Asp(7) and Arg(16) or Arg(19). Peptides with Arg(16) replaced by Gly and Leu, respectively, i.e., F14 and F15, were also found to bind to thrombin but with a different conformation, as indicated by the absence of the long-range NOEs observed with fibrinopeptide A. Residues Asp(7)-Arg(16) constitute an essential structural element in the interaction of thrombin with fibrinogen.  相似文献   

3.
F Ni  H A Scheraga  S T Lord 《Biochemistry》1988,27(12):4481-4491
The proton resonances of the following synthetic linear human fibrinogen-like peptides were completely assigned with two-dimensional NMR techniques in solution: Ala(1)-Asp-Ser-Gly-Glu-Gly-Asp(7)-Phe-Leu-Ala-Glu-Gly(12)-Gly(13)-Gly(14)- Val(15)-Arg(16)-Gly-Pro-Arg-Val-Val-Glu-Arg (F10), Ala-Asp-Ser-Gly-Glu-Gly-Asp-Phe-Leu-Ala-Glu-Gly-Gly(13)-Gly(14)-Val-Arg (F11), and Gly-Pro-Arg-Val-Val-Glu-Arg (F12). No predominant structure was found in the chain segment from Ala(1) to Gly(6) for F10 in both H2O and dimethyl sulfoxide. The previous suggestion that there is a hairpin loop involving residues Gly(12) to Val(15) in the A alpha chain of human fibrinogen is supported by the slow backbone NH exchange rates of Gly(14) and Val(15), by an unusually small NH chemical shift of Val(15), and by strong sequential NOE's involving this region in F10. This local chain fold within residues Asp(7) to Val(20) may place the distant Phe residue near the Arg(16)-Gly(17) peptide bond which is cleaved by thrombin.  相似文献   

4.
The following synthetic linear A alpha fibrinogen-like peptides were studied by NMR spectroscopy in aqueous solution: Ac-Asp(P10)-Phe(P9)-Leu-Ala-Glu-Gly(P5)-Gly(P4)-Gly(P3)-Val- Arg(P1)-Gly-(P1)-Pro-Arg(P3')-Val-NHCH3 (F-8), Ac-Phe-Leu-Ala-Glu-Gly-Gly(P4)-Gly(P3)-Val-Arg-Gly-Pro-NHCH3 (F-6), Ac-Leu-Ala-Glu-Gly-Gly(P4)-Gly(P3)-Val-Arg-Gly-Pro-NHCH3 (F-7), and Ac-Gly-Gly(P4)-Gly-(P3)-Val-Arg-Gly-Pro-NHCH3 (F-9). The temperature dependence of the amide proton chemical shift is smaller by approximately 22% for the Gly(P3) amide proton in F-9, F-6, and F-8 and is similarly smaller for the Gly(P4) amide proton in F-6 and F-8, but not F-9, relative to the other amide protons in these peptides. The exchange rates with solvent water for the Gly(P3) amide proton in each of these four peptides were determined by solvent spin saturation transfer experiments. The exchange rate constant for the Gly(P3) amide proton of F-8 was half that of the rate constant determined for this proton in F-9, F-7, and F-6. In conjunction with previously reported data for the rate of hydrolysis of the Arg(P1)-Gly(P1') bond by thrombin, these results suggest that there is a beta-bend at Gly(P5)-Gly(P4), possibly stabilized by salt links between Asp(P10) and Arg(P3') and between phosphorylated Ser(P14) and Arg(P7'), which brings Phe(P9) close to the hydrolyzable Arg-Gly bonds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The purpose of this study is to elucidate the solution conformation of cyclic peptide 1 (cIBR), cyclo (1, 12)-Pen1-Pro2-Arg3-Gly4-Gly5-Ser6-Val7-Leu8-V al9-Thr10-Gly11-Cys12-OH, using NMR, circular dichroism (CD) and molecular dynamics (MD) simulation experiments. cIBR peptide (1), which is derived from the sequence of intercellular adhesion molecule-1 (ICAM-1, CD54), inhibits homotypic T-cell adhesion in vitro. The peptide hinders T-cell adhesion by inhibiting the leukocyte function-associated antigen-1 (LFA-1, CD11a/CD18) interaction with ICAM-1. Furthermore, Molt-3 T cells bind and internalize this peptide via cell surface receptors such as LFA-1. Peptide internalization by the LFA-1 receptor is one possible mechanism of inhibition of T-cell adhesion. The recognition of the peptide by LFA-1 is due to its sequence and conformation; therefore, this study can provide a better understanding for the conformational requirement of peptide-receptor interactions. The solution structure of 1 was determined using NMR, CD and MD simulation in aqueous solution. NMR showed a major and a minor conformer due to the presence of cis/trans isomerization at the X-Pro peptide bond. Because the contribution of the minor conformer is very small, this work is focused only on the major conformer. In solution, the major conformer shows a trans-configuration at the Pen1-Pro2 peptide bond as determined by HMQC NMR. The major conformer shows possible beta-turns at Pro2-Arg3-Gly4-Gly5, Gly5-Ser6-Val7-Leu8, and Val9-Thr10-Gly11-Cys12. The first beta-turn is supported by the ROE connectivities between the NH of Gly4 and the NH of Gly5. The connectivities between the NH of Ser6 and the NH of Val7, followed by the interaction between the amide protons of Val7 and Leu8, support the presence of the second beta-turn. Furthermore, the presence of a beta-turn at Val9-Thr10-Gly11-Cys12 is supported by the NH-NH connectivities between Thr10 and Gly11 and between Gly11 and Cys12. The propensity to form a type I beta-turn structure is also supported by CD spectral analysis. The cIBR peptide (1) shows structural similarity at residues Pro2 to Val7 with the same sequence in the X-ray structure of D1-domain of ICAM-1. The conformation of Pro2 to Val7 in this peptide may be important for its binding selectivity to the LFA-1 receptor.  相似文献   

6.
The purpose of this work was to study the conformation of cyclic peptide 1, cyclo(1,12)-Pen1-Ile2-Thr3-Asp4-Gly5-Glu6-Ala7- Thr8-Asp9-Ser10-Gly11-Cys12-OH, derived from the I-domain of the LFA-1 alpha-subunit. We found that cyclic peptide 1 can bind to the D1-domain of ICAM-1 and inhibit ICAM-1/LFA-1-mediated homotypic and heterotypic T-cell adhesion. To understand the bioactive conformation and binding requirements for cyclic peptide 1, its solution structure was studied using NMR, CD, and molecular dynamics simulations. Furthermore, possible binding properties between the cyclic peptide and the D1-domain of ICAM-1 were evaluated using docking experiments. This cyclic peptide has a stable betaII -turn at Asp4- Gly5-Glu6-Ala7 and a betaI-turn at Pen1-Ile2-Thr3-Asp4; a less stable betaV-turn is found at the C-terminal region. The beta-turn at Asp4- Gly5-Glu6-Ala7 was also found in the X-ray structure of the I-domain of LFA-1. Our CD studies showed that the peptide binds to calcium/magnesium and forms a 1:1 (peptide:calcium/magnesium) complex with low cation concentrations and multiple types of complexes with higher cation concentrations. Binding to divalent cations causes a conformational change in peptide 1; this is consistent with our previous study that binding of peptide 1 to ICAM-1 was influenced by divalent cations. Docking studies show the interaction between cyclic peptide 1 and the D1-domain of ICAM-1; it indicates that the Ile2-Thr3-Asp4-Gly4-Glu6-Ala7-Thr8 sequence interacts with the F and C strands of the D1-domain. Finally, these studies will help us design a new generation of selective peptides that may bind better to the D1-domain of ICAM-1.  相似文献   

7.
De novo designed peptide based super secondary structures are expected to provide scaffolds for the incorporation of functional sites as in proteins. Self-association of peptide helices of similar screw sense, mediated by weak interactions, has been probed by the crystal structure determination of two closely related peptides: Ac-Gly1-Ala2-Delta Phe3-Leu4-Val5-DeltaPhe6-Leu7-Val8-DeltaPhe9-Ala10-Gly11-NH2 (I) and Ac-Gly1-Ala2-DeltaPhe3-Leu4-Ala5-DeltaPhe6-Leu7-Ala8-DeltaPhe9-Ala10-Gly11-NH2 (II). The crystal structures determined to atomic resolution and refined to R factors 8.12 and 4.01%, respectively, reveal right-handed 3(10)-helical conformations for both peptides. CD has also revealed the preferential formation of right-handed 3(10)-helical conformations for both molecules. Our aim was to critically analyze the packing of the helices in the solid state with a view to elicit clues for the design of super secondary structural motifs such as two, three, and four helical bundles based on helix-helix interactions. An important finding is that a packing motif could be identified common to both the structures, in which a given peptide helix is surrounded by six other helices reminiscent of transmembrane seven helical bundles. The outer helices are oriented either parallel or antiparallel to the central helix. The helices interact laterally through a combination of N--H...O, C--H...O, and C--H...pi hydrogen bonds. Layers of interacting leucine residues are seen in both peptide crystal structures. The packing of the peptide helices in the solid state appears to provide valuable leads for the design of super secondary structural modules such as two, three, or four helix bundles by connecting adjacent antiparallel helices through suitable linkers such as tetraglycine segments.  相似文献   

8.
Synthesis, proton magnetic resonance and carbon-13 magnetic resonance characterizations, including complete assignments, are reported for the polyhexapeptide of elastin, HCO-Val(Ala1-Pro2-Gly3-Val4-Gly5-Val6)18-OMe. Temperature dependence of peptide NH chemical shifts and solvent dependence of peptide C-O chemical shifts have been determined in several solvents and have been interpreted in terms of four hydrogen bonded rings for each repeat of the polyhexapeptide. The more stable hydrogen bonded ring is a beta-turn involving Ala1C-O--HN-Val4. More dynamic hydrogen bonds are an 11-atom hydrogen bonded ring Gly3NH--O-C Gly5, a 7-atom hydrogen bonded ring (a gamma-turn) Gly3 C-O--NH-Gly5, and a 23-atom hydrogen bonded ring Val6inH--O-C Val6(i+1). This set of hydrogen bonds results in a right-handed beta-spiral structure with slightly more than two repeats (approximately 2.2) per turn of spiral. The beta-spiral structure is briefly discussed relative to data on the elastic fiber.  相似文献   

9.
The cyclododecapeptide, (Ala1-Pro2-Gly3-Val4-Gly5-Val6)2, was synthesized and its secondary structure was evaluated from extensive studies in dimethyl sulphoxide, trifluoroethanol and water using NMR methods. A selective decoupling technique in 13C-NMR has been utilized in order to assign the C=O carbon resonances. Temperature dependence of the peptide NH protons and the solvent perturbation of the peptide NH and C=O resonances show the occurrence in all solvents of a beta-turn (a 10-membered H-bond between the Val4 NH and Ala1 C=O) and a gamma-turn, an 11-membered H-bond between the Gly3 NH and the Gly5 C=O; and a possible 14-membered H-bond between the Ala1 NH and the Val4 C=O in dimethyl sulphoxide and trifluoroethanol. These secondary structural features are compared with the linear polyhexapeptide and found the the beta-turn and the gamma-turn are the common conformational features of these peptide systems.  相似文献   

10.
One carbonyl oxygen of the cyclic hexapeptide cyclo(-Gly1-Pro2-Phe3-Val4-Phe5-Phe6-) (A) can be selectively exchanged with sulphur using Yokoyama's reagent. Surprisingly it was not the C=] of Gly1 but that of Phe5 which was substituted and cyclo(-Gly1-Pro2-Phe3-Val4-Phe5 psi [CS-NH]Phe6-) (B) was obtained. Thionation results in a conformational change of the peptide backbone although the C=O of Phe5 and the corresponding C=S are not involved in internal hydrogen bonds. Two isomers in slow exchange, containing a cis Gly1-Pro2 bond in a beta VIa-turn (minor) and a trans Gly-Pro bond in a beta II'-turn (major), were analyzed by restrained molecular dynamics in vacuo and in DMSO as well as using time dependent distance constraints. It is impossible to fit all experimental data to a static structure of each isomer. Interpreting the conflicting NOEs, local segment flexibility is found. MD simulations lead to a dynamic model for each structure with evidence of an equilibrium between a beta I- and beta II-turn about the Val4-Phe5 amide bond in both the cis and trans isomers. Additionally proton relaxation rates in the rotating frame (R1 rho) were measured to verify the assumption of this fast beta I/beta II equilibrium within each isomer. Significant contributions to R1 rho-rates from intramolecular motions were found for both isomers. Therefore it is possible to distinguish between at least four conformers interconverting on different time scales based on NMR data and MD refinement. This work shows that thionation is a useful modification of peptides for conformation-activity investigations.  相似文献   

11.
MUC1 mucin is a large transmembrane glycoprotein, of which the extracellular domain is formed by a repeating 20 amino acid sequence, GVTSAPDTRPAPGSTAPPAH. In normal breast epithelial cells, the extracellular domain is densely covered with highly branched complex carbohydrate structures. However, in neoplastic breast tissue, the extracellular domain is underglycosylated, resulting in the exposure of a highly immunogenic core peptide epitope (PDTRP in bold above) as well as the normally cryptic core Tn (GalNAc), STn (sialyl alpha2-6 GalNAc), and TF (Gal beta1-3 GalNAc) carbohydrates. In the present study, NMR methods were used to correlate the effects of cryptic glycosylation outside of the PDTRP core epitope region to the recognition and binding of a monoclonal antibody, Mab B27.29, raised against the intact tumor-associated MUC1 mucin. Four peptides were studied: a MUC1 16mer peptide of the sequence Gly1-Val2-Thr3-Ser4-Ala5-Pro6-Asp7-Thr8-Arg9-Pro10-Ala11-Pro12-Gly13-Ser14-Thr15-Ala16, two singly Tn-glycosylated versions of this peptide at either Thr3 or Ser4, and a doubly Tn-glycosylated version at both Thr3 and Ser4. The results of these studies showed that the B27.29 MUC1 B-cell epitope maps to two separate parts of the glycopeptide, the core peptide epitope spanning the PDTRP sequence and a second (carbohydrate) epitope comprised of the Tn moieties attached at Thr3 and Ser4. The implications of these results are discussed within the framework of developing a glycosylated second-generation MUC1 glycopeptide vaccine.  相似文献   

12.
Abstract

The purpose of this work was to study the conformation of cyclic peptide 1, cyclo(1,12)- Pen1-Ile2-Thr3-Asp4-Gly5-Glu6-Ala7-Thr8-Asp9-Ser10-Gly11-Cys12-OH, derived from the I-domain of the LFA-1 α-subunit. We found that cyclic peptide 1 can bind to the D1- domain of ICAM-1 and inhibit ICAM-1/LFA-1-mediated homotypic and heterotypic T-cell adhesion. To understand the bioactive conformation and binding requirements for cyclic peptide 1, its solution structure was studied using NMR, CD, and molecular dynamics simulations. Furthermore, possible binding properties between the cyclic peptide and the D1- domain of ICAM-1 were evaluated using docking experiments. This cyclic peptide has a stable βII'-turn at Asp4-Gly5-Glu6-Ala7 and a βI-turn at Pen1-Ile2-Thr3-Asp4; a less stable βV-turn is found at the C-terminal region. The β-turn at Asp4-Gly5-Glu6-Ala7 was also found in the X-ray structure of the I-domain of LFA-1. Our CD studies showed that the peptide binds to calcium/magnesium and forms a 1:1 (peptide:calcium/magnesium) complex with low cation concentrations and multiple types of complexes with higher cation concentrations. Binding to divalent cations causes a conformational change in peptide 1; this is consistent with our previous study that binding of peptide 1 to ICAM-1 was influenced by divalent cations. Docking studies show the interaction between cyclic peptide 1 and the D1- domain of ICAM-1; it indicates that the Ile2-Thr3-Asp4-Gly4-Glu6-Ala7-Thr8 sequence interacts with the F and C strands of the D1-domain. Finally, these studies will help us design a new generation of selective peptides that may bind better to the D1-domain of ICAM-1.  相似文献   

13.
Previously we defined binding sites for high molecular weight kininogen (HK) and thrombin in the Apple 1 (A1) domain of factor XI (FXI). Since prothrombin (and Ca(2+)) can bind FXI and can substitute for HK (and Zn(2+)) as a cofactor for FXI binding to platelets, we have attempted to identify a prothrombin-binding site in FXI. The recombinant A1 domain (rA1, Glu(1)-Ser(90)) inhibited the saturable, specific and reversible binding of prothrombin to FXI, whereas neither the rA2 domain (Ser(90)-Ala(181)), rA3 domain (Ala(181)-Val(271)), nor rA4 domain (Phe(272)-Glu(361)) inhibited prothrombin binding to FXI. Kinetic binding studies using surface plasmon resonance showed binding of FXI (K(d) approximately 71 nm) and the rA1 domain (K(d) approximately 239 nm) but not rA2, rA3, or rA4 to immobilized prothrombin. Reciprocal binding studies revealed that synthetic peptides (encompassing residues Ala(45)-Ser(86)) containing both HK- and thrombin-binding sites, inhibit (125)I-rA1 (Glu(1)-Ser(90)) binding to prothrombin, (125)I-prothrombin binding to FXI, and (125)I-prothrombin fragment 2 (Ser(156)-Arg(271)) binding to FXI. However, homologous prekallikrein-derived peptides (encompassing Pro(45)-Gly(86)) did not inhibit FXI rA1 binding to prothrombin. The peptides Ala(45)-Arg(54), Phe(56)-Val(71), and Asp(72)-Ser(86), derived from sequences of the A1 domain of FXI, acted synergistically to inhibit (125)I-rA1 binding to prothrombin. Mutant rA1 peptides (V64A and I77A), which did not inhibit FXI binding to HK, retained full capacity to inhibit rA1 domain binding to prothrombin, and mutant rA1 peptides Ala(45)-Ala(54) (D51A) and Val(59)-Arg(70) (E66A), which did not inhibit FXI binding to thrombin, retained full capacity to inhibit rA1 domain binding to prothrombin. Thus, these experiments demonstrate that a prothrombin binding site exists in the A1 domain of FXI spanning residues Ala(45)-Ser(86) that is contiguous with but separate and distinct from the HK- and thrombin-binding sites and that this interaction occurs through the kringle II domain of prothrombin.  相似文献   

14.
Nukacin ISK-1, a type-A(II) lantibiotic, comprises 27 amino acids with a distinct linear N-terminal and a globular C-terminal region. To identify the positional importance or redundancy of individual residues responsible for nukacin ISK-1 antimicrobial activity, we replaced the native codons of the parent peptide with NNK triplet oligonucleotides in order to generate a bank of nukacin ISK-1 variants. The bioactivity of each peptide variant was evaluated by colony overlay assay, and hence we identified three Lys residues (Lys1, Lys2 and Lys3) that provided electrostatic interactions with the target membrane and were significantly variable. The ring structure of nukacin ISK-1 was found to be crucially important as replacing the ring-forming residues caused a complete loss of bioactivity. In addition to the ring-forming residues, Gly5, His12, Asp13, Met16, Asn17 and Gln20 residues were found to be essential for antimicrobial activity; Val6, Ile7, Val10, Phe19, Phe21, Val22, Phe23 and Thr24 were relatively variable; and Ser4, Pro8, His15 and Ser27 were extensively variable relative to their positions. We obtained two variants, Asp13Glu and Val22Ile, which exhibited a twofold higher specific activity compared with the wild-type and are the first reported type-A(II) lantibiotic mutant peptides with increased potency.  相似文献   

15.
Repeat hexapeptides of elastin have been synthesized and studied with nuclear magnetic resonance methods. The deuterium substituted hexapeptide HCO-Ala1-Pro2-(2H2) Gly3-Val4-Gly5-Val6-OMe allowed completion of the proton assignments and specifically the definitive assignments of the Gly3 and Gly5 resonances. Solvent titrations followed by carbon-13 magnetic resonances are reported which delineate the Ala1 C-O and Gly5 C-O as intramolecularly hydrogen bonded. This coupled with the proton magnetic resonance data which delineated the Gly3 NH and VAL4 NH as candidates for intramolecular hydrogen bonding lead to the proposal of two hydrogen bonds, one between the Ala1 C-O and the Val4NH and the second between the Gly5C-O and the Gly3NH. The probability, or mol fraction, of occurrence of these secondary structural features is demonstrated to be high.  相似文献   

16.
In an effort to explore the residue preferences in three-residue reverse turns (so-called gamma-turns), two cyclic pentapeptides--cyclo(Gly1-Pro2-D-Phe3-Gly4-Ala5) (I) and cyclo(Gly1-Pro2-D-Phe3-Gly4-Val5) (II)--have been synthesized and analyzed by nmr. It was anticipated that the Gly-Pro-D-Phe-Gly portions of these molecules would favor a beta-turn conformation, leaving the remainder of the molecule to adopt a gamma turn, as seen in several previously studied model cyclic pentapeptides. The nmr data for both peptides in CDCl3 (5% DMSO-d6) and in neat DMSO-d6 indicate that the most populated conformation contains a distorted beta turn around Pro2-D-Phe3, which includes a gamma turn around D-Phe3. The distortion in the beta turn does not impede the formation of an inverse gamma turn around residue 5, and indeed, this conformation is observed in both peptides. Both the alanine and the bulkier valine residues are therefore found to be compatible with an inverse gamma turn. Molecular dynamics simulations on the title peptides are reported in the following paper. These simulations indicate that there is conformational flexibility around the D-Phe3-Gly4 peptide bond, which enables the formation of the gamma turn around D-Phe3. The third paper in this series explores the impact of a micellar environment on conformational equilibria in II.  相似文献   

17.
Z Zheng  R W Ashton  F Ni  H A Scheraga 《Biochemistry》1992,31(18):4426-4431
Fibrinogen Lille, a congenital dysfibrinogenemia, has been reported to arise from a mutation from Asp to Asn at position 7 of the A alpha chain of human fibrinogen, thereby reducing the thrombin-catalyzed rate of hydrolysis of the Arg(16)-Gly(17) peptide bond of this chain. Synthetic peptides of relevant portions of the wild-type and mutant A alpha chains were prepared, and the thrombin-catalyzed rates of hydrolysis of their Arg(16)-Gly(17) peptide bonds were determined. In addition, transferred NOE measurements were made to deduce their conformations, when complexed to bovine thrombin. The kinetics data showed little difference in the hydrolysis rates between the wild-type and mutant peptides, and the NMR data indicate no difference in the bound conformation of these two peptides. Therefore, electrostatic (or salt-bridge) interactions between Asp(7) and thrombin do not influence the bound conformations of these peptides. Asp(7) may interact with a remote residue of fibrinogen, not present in these synthetic peptides, or there may be additional mutations beyond A alpha (1-20) which have not been detected in fibrinogen Lille. Alternatively, when thrombin binds to fibrinogen at its secondary binding site, its primary (active) site may display different reactivities toward wild-type fibrinogen and fibrinogen Lille.  相似文献   

18.
A cysteine proteinase purified from pupae of the blowfly (A. grahami) was tested for its peptide-bond specificity against the oxidized B-chain of insulin. Fifteen peptides were separated on HPLC using both gradient and isocratic elution methods. Analyses of amino acid content and N-terminal amino acids indicated that these were eleven homogeneous peptides produced by digestion and undigested insulin B-chain. Glu13-Ala14 and Tyr26-Thr27 were the major cleavage sites, and Asn3-Gln4, Cys7-Gly8, Tyr16-Leu17, Leu17-Val18 and Cys19-Gly20 were also often cleaved. These findings show the similarity between this enzyme and cathepsin L.  相似文献   

19.
A proteinase was purified from resting seeds of Cucurbita ficifolia by ammonium sulfate fractionation and successive chromatography on CM-cellulose, Sephacryl S-300 and TSK DEAE-2SW (HPLC) columns. Inhibition by DFP and PMSF suggests that the enzyme is a serine proteinase. The apparent molecular mass of this enzyme is ca. 77 kDa. The optimum activity for hydrolysis of casein and Suc-Ala-Ala-Pro-Phe-pNA is around pH 10.5. The following peptide bonds in the oxidized insulin B-chain were hydrolysed by the proteinase: Phe1-Val2, Asn3-Gln4, Gln4-His5, Cya7-Gly8, Glu13-Ala14, Ala14-Leu15, Cya19-Gly20, Pro28-Lys29 and Lys29-Ala30. The proteinase is more selective towards the native squash seed trypsin inhibitor (CMTI I) and primarily cuts off only its N-terminal arginine. The inhibitor devoided of the N-terminal arginine residue is still active against trypsin.  相似文献   

20.
Deposition of extraneuronal fibrils that assemble from the 39-43 residue beta/A4 amyloid protein is one of the earliest histopathological features of Alzheimer's disease. We have used negative-stain electron microscopy, Fourier-transform infrared (FT-IR) spectroscopy, and fiber X-ray diffraction to examine the structure and properties of synthetic peptides corresponding to residues 1-40 of the beta/A4 protein of primate [Pm(1-40); human and monkey], rodent [Ro(1-40); with Arg5-->Gly, Tyr10-->Phe, and His13-->Arg], and hereditary cerebral hemorrhage with amyloidosis of the Dutch type (HCHWA-D) [Du(1-40); with Glu22-->Gln]. As controls, we examined a reverse primate sequence [Pm*(40-1)] and an extensively substituted primate peptide [C(1-40); with Glu3-->Arg, Arg5-->Glu, Asp7-->Val, His13-->Lys, Lys16-->His, Val18-->Asp, Phe19-->Ser, Phe20-->Tyr, Ser26-->Pro, Ala30-->Val, Ile31-->Ala, Met35-->norLeu, Gly38-->Ile, Val39-->Ala, and Val40-->Gly]. The assembly of these peptides was studied to understand the relationship between species-dependent amyloid formation and beta/A4 sequence and the effect of a naturally occurring point mutation of fibrillogenesis. The three N-terminal amino acid differences between Pm(1-40) and Ro(1-40) had virtually no effect on the morphology or organization of the fibrils formed by these peptides, indicating that the lack of amyloid deposits in rodent brain is not due directly to specific changes in its beta/A4 sequence. beta-Sheet and fibril formation, judged by FT-IR, was maximal within the pH range 5-8 for Pm(1-40), pH 5-10.5 for Du(1-40), and pH 2.5-8 for Ro(1-40).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号