首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Several mycoplasma species are known to glide in the direction of the membrane protrusion (head-like structure), but the mechanism underlying this movement is entirely unknown. To identify proteins involved in the gliding mechanism, protein fractions of Mycoplasma mobile were analyzed for 10 gliding mutants isolated previously. One large protein (Gli349) was observed to be missing in a mutant m13 deficient in hemadsorption and glass binding. The predicted amino acid sequence indicated a 348,758-Da protein that was truncated at amino acid residue 1257 in the mutant. Immunofluorescence microscopy with a monoclonal antibody showed that Gli349 is localized at the head-like protrusion's base, which we designated the cell neck, and immunoelectron microscopy established that the Gli349 molecules are distributed all around this neck. The number of Gli349 molecules on a cell was estimated by immunoblot analysis to be 450 +/- 200. The antibody inhibited both the hemadsorption and glass binding of M. mobile. When the antibody was used to treat gliding mycoplasmas, the gliding speed and the extent of glass binding were inhibited to similar extents depending on the concentration of the antibody. This suggested that the Gli349 molecule is involved not only in glass binding for gliding but also in movement. To explain the present results, a model for the mechanical cycle of gliding is discussed.  相似文献   

2.
3.
Several species of mycoplasmas rely on an unknown mechanism to glide across solid surfaces in the direction of a membrane protrusion at the cell pole. Our recent studies on the fastest species, Mycoplasma mobile, suggested that a 349-kDa protein, Gli349, localized at the base of the membrane protrusion called the neck, forms legs that stick out from the neck and propel the cell by repeatedly binding to and releasing from a solid surface, based on the energy of ATP hydrolysis. Here, the Gli349 protein was isolated from mycoplasma cells and its structure was analyzed. Gel filtration analysis showed that the isolated Gli349 protein is monomeric. Rotary shadowing electron microscopy revealed that the molecular structure resembles the symbol for an eighth note in music. It contains an oval foot 14 nm long in axis. From this foot extend three rods in tandem of 43, 20, and 20 nm, in that order. The hinge connecting the first and second rods is flexible, while the next hinge has a distinct preference in its angle, near 90 degrees. Molecular images revealed that a monoclonal antibody that can bind to the position at one-third of the total peptide length from the N terminus bound to a position two-thirds from the foot end, suggesting that the foot corresponds to the C-terminal region. The amino acid sequence was assigned to the molecular image, and the topology of the molecule in the gliding machinery is discussed.  相似文献   

4.
Recent studies of the gliding bacteria Mycoplasma mobile have identified a family of proteins called the Gli family which was considered to be involved in this novel and yet fairly unknown motility system. The 349 kDa protein called Gli349 was successfully isolated and purified from the bacteria, and electron microscopy imaging and antibody experiments led to the hypothesis that it acts as the “leg” of M. mobile, responsible for attachment to the substrate as well as for gliding motility. However, more precise evidence of the molecular shape and function of this protein was required to asses this theory any further. In this study, an atomic force microscope (AFM) was used both as an imaging and a force measurement device to provide new information about Gli349 and its role in gliding motility. AFM images of the protein were obtained revealing a complex structure with both rigid and flexible parts, consistent with previous electron micrographs of the protein. Single-molecular force spectroscopy experiments were also performed, revealing that Gli349 is able to specifically bind to sialyllactose molecules and withstand unbinding forces around 70 pN. These findings strongly support the idea that Gli349 is the “leg” protein of M. mobile, responsible for binding and also most probably force generation during gliding motility.  相似文献   

5.
Mycoplasma mobile binds to solid surfaces and glides smoothly and continuously by a unique mechanism. A huge protein, Gli521 (521 kDa), is involved in the gliding machinery, and it is localized in the cell neck, the base of the membrane protrusion. This protein is thought to have the role of force transmission. In this study, the Gli521 protein was purified from M. mobile cells, and its molecular shape was studied. Gel filtration analysis showed that the isolated Gli521 protein forms mainly a monomer in Tween 80-containing buffer and oligomers in Triton X-100-containing buffer. Rotary shadowing electron microscopy showed that the Gli521 monomer consisted of three parts: an oval, a rod, and a hook. The oval was 15 nm long by 11 nm wide, and the filamentous part composed of the rod and the hook was 106 nm long and 3 nm in diameter. The Gli521 molecules form a trimer, producing a “triskelion” reminiscent of eukaryotic clathrin, through association at the hook end. Image averaging of the central part of the triskelion suggested that there are stable and rigid structures. The binding site of a previously isolated monoclonal antibody on Gli521 images showed that the hook end and oval correspond to the C- and N-terminal regions, respectively. Partial digestion of Gli521 showed that the molecule could be divided into three domains, which we assigned to the oval, rod, and hook of the molecular image. The Gli521 molecule''s role in the gliding mechanism is discussed.Mycoplasmas are commensal and occasionally parasitic bacteria with small genomes that lack a peptidoglycan layer (31). Several mycoplasma species form membrane protrusions, such as the headlike structure in Mycoplasma mobile and the attachment organelle in Mycoplasma pneumoniae (15, 19, 21, 22, 25, 33, 34, 36). On solid surfaces, these species exhibit gliding motility in the direction of the protrusion; this motility is believed to be involved in the pathogenicity of mycoplasmas (12, 13, 16, 20, 21). Interestingly, mycoplasmas have no surface flagella or pili, and their genomes contain no genes related to other known bacterial motility systems. In addition, no homologs of motor proteins that are common in eukaryotic motility have been found (11).M. mobile, which was isolated from the gills of a freshwater fish in the early 1980s, is a fast gliding mycoplasma (14). It glides smoothly and continuously on glass at an average speed of 2.0 to 4.5 μm/s, or three to seven times the length of the cell per second, exerting a force of up to 27 pN (8, 9, 24, 25, 32). Previously, we identified huge proteins involved in this gliding mechanism that are localized at the so-called cell neck, the base of the membrane protrusion (17, 26, 30, 35, 37, 39); we also visualized the putative machinery and the binding protein (1, 18, 23) and identified both the direct energy source used and the direct binding target (10, 27, 38). The force generated by the gliding machinery may be supported from inside the cell by a cytoskeletal “jellyfish” structure (28, 29). On the basis of these results, we proposed a working model, called the centipede or power stroke model, where cells are propelled by “legs” composed of Gli349 that repeatedly catch and release sialic acids fixed on the glass surface (5, 19, 21). These legs are driven by the force exerted by P42 through Gli521 molecules, which is supported by the jellyfish structure, based on energy from ATP hydrolysis.The Gli521 protein, which has an unusually high molecular mass (521 kDa), is suggested to have the role of force transmission, because a monoclonal antibody against this protein stops gliding, keeping the cells on a solid surface (35). About 450 molecules are estimated to be clustered in the gliding machinery with other component proteins, although their alignment has not been clarified (35, 37, 39). In this study, we isolated the Gli521 protein and studied its molecular shape using electron microscopy (EM) and biochemical analyses in order to understand the gliding mechanism.  相似文献   

6.
A protein with a molecular mass of 42 kDa (P42) from Mycoplasma mobile, one of several mycoplasmas that exhibit gliding motility, was shown to be a novel NTPase (nucleoside triphosphatase). Although the P42 protein lacks a common ATP-binding sequence motif (Walker A), the recombinant proteins expressed in Escherichia coli certainly hydrolysed some nucleoside triphosphates, including ATP. The results of photoaffinity labelling by an ATP analogue supported that the P42 protein contains a specific binding site for ATP (or another nucleoside triphosphate). In the M. mobile genome, the P42 gene is located downstream of gli123, gli349 and gli521 genes, and they have been reported to be polycis-tronically transcribed. As the huge proteins encoded by gli123, gli349 and gli521 play a role in gliding motility of M. mobile, P42 might also have some kind of function in the gliding motility. The gliding motility of M. mobile is driven directly by ATP hydrolysis, but the key ATPase has not been identified. Our results showed that, among these four proteins, only P42 exhibited ATPase activity. Biochemical characteristics--optimal conditions for activity, substrate specificities, and inhibiting effects by ATP analogues--of the recombinant P42 proteins were very similar to those of a putative ATPase speculated from a previous analysis with a gliding 'ghost' whose cell membrane was permeabilized by Triton X-100. These results support the hypothesis that the P42 protein is the key ATPase in the gliding motility of M. mobile.  相似文献   

7.
Mycoplasma mobile cells glide on solid surfaces such as glass with a fast and continuous motion in the direction of the membrane protrusion (head-like structure) at one cell pole. To examine its cell-surface movement, a latex bead was attached to a cell and behavior in gliding was monitored. The bead was carried without movement relative to the cell body, suggesting that the cell does not roll around the cell axis and the surface movement is limited to a small area. A small percentage of cells showed an elongated head-like structure in an old batch culture. The head-like structure moved forward, sometimes leaving the cell body in one position, resulting in a stretching of this head-like structure. These results indicate that the head-like structure drags the cell body, leading us to conclude that the force for gliding is generated at the head-like structure.  相似文献   

8.
Caenorhabditis elegans sperm are nonflagellated cells that lack actin and myosin yet can form pseudopods to propel themselves over solid substrates. Surface-attached probes such as latex beads, lectins, and antimembrane protein monoclonal antibodies move rearward over the dorsal pseudopod surface of sessile cells. Using monoclonal antibodies against membrane proteins of C. elegans sperm to examine the role of localized membrane assembly and rearward flow in crawling movement, we determined that substrates prepared by coating glass with antimembrane protein antibodies, but not naked glass or other nonmembrane-binding proteins, promote sperm motility. Sperm locomotion is inhibited in a concentration-dependent fashion when cells are bathed with soluble antimembrane protein monoclonal antibodies but not with antimouse Ig antibodies or a monoclonal antibody against a sperm cytoplasmic protein. Our results suggest that C. elegans sperm crawl by gaining traction with substrate-attached ligands via their surface proteins and by using the motor that moves those proteins rearward on unattached cells to pull the entire cell forward. Continuous insertion of new proteins at the front of the cell and their subsequent adhesion to the substrate allows this process to continue.  相似文献   

9.
Mycoplasma mobile is a flask-shaped bacteria that binds to a substrate and glides towards its tapered end, the so-called "head-like protrusion," by an unknown mechanism. To search for cellular structures underlying this motility, the cell-substrate interface of actively gliding cells was visualized by rapid-freeze-and-freeze-fracture rotary-shadow electron microscopy. Novel structures, called "spikes," were observed to protrude from the cell membrane and attach to the glass surface at their distal end. The spikes were on average 50 nm in length and 4 nm in diameter, most abundant around the head, and not observed in a nonbinding mutant. The spikes may be involved in the mechanism of binding, gliding, or both.  相似文献   

10.
Abstract Sporozoites of Cryptosporidium parvum were examined after gliding upon glass microscope slides using monoclonal antibodies to the 15 and 25 kDa surface molecules and immunogold-silver enhancement. Both antibodies bound to surface antigen deposited as trails behind parasites, suggesting that both surface molecules are involved in substrate attachment.  相似文献   

11.
As Plasmodium sporozoites undergo gliding motility in vitro, they leave behind trails of circumsporozoite (CS) protein that correspond to their patterns of movement. This light microscopic observation was made using Plasmodium berghei sporozoites, a monoclonal antibody (MAb H4) directed against the immunodominant repetitive epitope of the CS protein of P. berghei, and an immunogold-silver staining (IGSS) technique. Sporozoites pretreated with agents that inhibit sporozoite motility and invasiveness did not produce trails. Sporozoites that glided on microscope slides coated with MAb H4 left behind considerably longer CS protein trails than those on uncoated slides, and the staining of these trails was more intense. The fact that the CS protein is an exoantigen continuously released as trails by motile sporozoites, together with our previous finding that anti-CS protein antibodies inhibit sporozoite motility, strongly suggests that the CS protein plays a role in gliding motility. The sensitive IGSS technique used in this study may be a useful tool in the study of the translocation of surface proteins during gliding of other apicomplexans, other protists, and bacteria.  相似文献   

12.
Cryptosporidium parvum sporozoites that exhibited gliding motility in vitro were examined by immunofluorescence with anticryptosporidial monoclonal antibodies (Mabs) for surface antigen deposition on poly-L-lysine-coated glass microscope slides. The Mabs that revealed trails are specific for an immunodominant 23-kDa antigen previously localized to the sporozoite surface.  相似文献   

13.
Immuno-atomic force microscopy of purple membrane.   总被引:4,自引:3,他引:1       下载免费PDF全文
The atomic force microscope is a useful tool for imaging native biological structures at high resolution. In analogy to conventional immunolabeling techniques, we have used antibodies directed against the C-terminus of bacteriorhodopsin to distinguish the cytoplasmic and extracellular surface of purple membrane while imaging in buffer solution. At forces > or = 0.8 nN the antibodies were removed by the scanning stylus and the molecular topography of the cytoplasmic purple membrane surface was revealed. When the stylus was retracted, the scanned membrane area was relabeled with antibodies within 10 min. The extracellular surface of purple membrane was imaged at 0.7 nm resolution, exhibiting a major and a minor protrusion per bacteriorhodopsin monomer. As confirmed by immuno-dot blot analysis and sodium dodecyl sulfate-gel electrophoresis, labeling of the purple membrane was not observed if the C-terminus of bacteriorhodopsin was cleaved off by papain.  相似文献   

14.
(1) We have prepared murine monoclonal antibodies to the membrane domain of the human erythrocyte anion transport protein (band 3). (2) All of these antibodies react with regions of the protein located at the cytoplasmic surface of the red cell. (3) One of the antibodies reacts with an epitope present on a cytoplasmic loop of the protein located between the C-terminus and a point 168 amino acids from the C-terminus. The other antibodies recognize different epitopes on the C-terminal tail of the protein and the sequences likely to be involved in these epitopes are defined. (4) Our results show that the C-terminus of the red-cell anion transport protein is located on the cytoplasmic side of the red-cell membrane. (5) None of the antibodies inhibited sulphate exchange transport when introduced into resealed red-cell membranes; however, the bivalent form of one of the antibodies reduced the inhibitory potency of 4-acetamido-4'-isothiocyanatostilbene disulphonate on sulphate exchange transport in resealed erythrocyte membranes. (6) Immunostaining of human kidney sections with the antibodies showed strong staining of the basolateral membrane of some but not all of the epithelial cells of distal tubules and the initial connecting segment of collecting tubules. With human liver, only the haematopoeitic cells of fetal liver reacted with all the antibodies.  相似文献   

15.
16.
We prepared monoclonal antibodies against penicillin-binding protein 1B (PBP 1B) of Escherichia coli to study the membrane topology, spatial organization, and enzyme activities of this protein. The majority of the antibodies derived with PBP 1B as the immunogen reacted against the carboxy terminus. To obtain monoclonal antibodies recognizing other epitopes, we used PBP 1B lacking the immunodominant carboxy-terminal 65 amino acids as the immunogen. Eighteen monoclonal antibodies directed against membrane-bound PBP 1B were isolated and characterized. The epitopes recognized by those monoclonal antibodies were located with various truncated forms of PBP 1B. We could distinguish four different epitope areas located on different parts of the molecule. Interestingly, we could not isolate monoclonal antibodies against the amino terminus, although they were specifically selected for. This is attributed to its predicted extreme hydrophilicity and flexibility, which could make the amino terminus very sensitive to proteolytic degradation. All antibodies reacted against native PBP 1B in a dot-blot immunobinding assay. One monoclonal antibody also recognized PBP 1B in a completely sodium dodecyl sulfate-denatured form. This suggests that all the other monoclonal antibodies recognize conformational epitopes. These properties make the monoclonal antibodies suitable tools for further studies.  相似文献   

17.
As Plasmodium sporozoites undergo gliding motility in vitro, they leave behind trails of circumsporozoite (CS) protein that correspond to their patterns of movement. This light microscopic observation was made using Plasmodium berghei sporozoites, a monoclonal antibody (MAb H4) directed against the immunodominant repetitive epitope of the CS protein of P. berghei, and an immunogold-silver staining (IGSS) technique. Sporozoites pretreated with agents that inhibit sporozoite motility and invasiveaess did not produce trails. Sporozoites that glided on microscope slides coated with MAb H4 left behind considerably longer CS prolem trails than those on uncoated slides, and the staining of these trails was more intense. The fact that the CS protein is an exoantigen continuously released as trails by motile sporozoites, together with our previous finding that anti-CS protein antibodies inhibit sporozoite motility, strongly suggests that the CS protein plays a role in gliding motility. The sensitive IGSS technique used in this study may be a useful tool in the study of the translocation of surface proteins during gliding of other apicomplexans, other protists, and bacteria.  相似文献   

18.
Cloning of rat ABCA7 and its preferential expression in platelets   总被引:2,自引:0,他引:2  
We cloned the full-length cDNA of a rat orthologue of ABCA7 (rABCA7) from rat platelets. The cDNA of rABCA7 is 6510bp in length and encodes a protein of 2170 amino acids. The amino acid sequence of rABCA7 exhibits homology to those of mouse ABCA7 (92.5% identical in amino acid sequence) and human ABCA7 (76.6%). We obtained two clones of monoclonal antibodies against rABCA7 recognizing different epitopes. Analysis of CHO cells stably expressing rABCA7 by confocal laser-scanning microscopy indicated that rABCA7 is mainly located in the plasma membrane. Western blot analysis of rat tissues revealed that rABCA7 was preferentially expressed in platelets and that its apparent molecular mass was 250kDa. This is the first report of the tissue distribution of rABCA7 at the protein level and is the first reported case of ABC transporters being expressed in platelets, suggesting their important role in platelet function.  相似文献   

19.
The major outer membrane protein of Haemophilus influenzae type b (Hib) is porin (Mr 38,000, 341 amino acids). To identify antigenic determinants on Hib porin that might be exposed at the bacterial cell surface, seven mouse monoclonal anti-Hib porin antibodies were generated. The monoclonal antibodies were tested for their binding to intact cells by flow cytometry; all but one bound to the cell surface. Digestions of Hib porin with cyanogen bromide, hydroxylamine or trypsin generated fragments, the identities of which were confirmed by microsequencing of the amino termini. Following electrophoresis and immunoblotting of the fragments, the specificities of the monoclonal antibodies for their cognate sequences were determined. The porin gene ompP2 was expressed in the baculovirus expression vector system; the recombinant porin was recognized by all of the monoclonal antibodies. Deletions were created by omega mutagenesis of ompP2, generating proteins truncated after amino acids 139, 174, 182, and 264. These deletion proteins were tested for reactivities with the monoclonal antibodies, thereby establishing the boundaries of three antigenic determinants that were recognized by the monoclonals: domain (i), amino acids 104-139; domain (ii) amino acids 162-174; and domain (iii), amino acids 267-341. The biological activities of monoclonal antibodies that were representative of these three classes were tested for their bactericidal activity in complement-mediated lysis of whole cells. The monoclonal antibodies were also tested for their immunoprotective properties in the infant rat model of bacteraemia. Although the monoclonal antibodies were surface-binding, they were neither bactericidal nor protective.  相似文献   

20.
Immunoelectron microscopic techniques were utilized to characterize the morphology of circumsporozoite protein-containing trails deposited on various substrates by gliding Plasmodium berghei and Plasmodium falciparum sporozoites. The basic components of the trails are beadlike particles, 25 to 90 nm in diameter, which are devoid of unit membrane and have an electron-lucent center. Trails were captured on formvar-covered grids coated with anticircumsporozoite protein monoclonal antibodies and compared with trails produced on uncoated formvar; the results suggest that material containing circumsporozoite protein forms the matrix within which the particles are embedded. The trails exhibit morphological features similar to those displayed by circumsporozoite precipitation reactions; of note is the demonstration of sheaths of circumsporozoite protein-containing material that emanate from sporozoites prior to their gliding. The sheaths narrow into accumulations of electron-dense material, which eventually taper to form typical trails. The structural manifestation of sheaths and other morphological details of the formed trails enables us to correlate sporozoite behavior during trail formation with the motile actions of gliding sporozoites observed by light microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号