共查询到20条相似文献,搜索用时 0 毫秒
1.
Hauge C Antal TL Hirschberg D Doehn U Thorup K Idrissova L Hansen K Jensen ON Jørgensen TJ Biondi RM Frödin M 《The EMBO journal》2007,26(9):2251-2261
The growth factor/insulin-stimulated AGC kinases share an activation mechanism based on three phosphorylation sites. Of these, only the role of the activation loop phosphate in the kinase domain and the hydrophobic motif (HM) phosphate in a C-terminal tail region are well characterized. We investigated the role of the third, so-called turn motif phosphate, also located in the tail, in the AGC kinases PKB, S6K, RSK, MSK, PRK and PKC. We report cooperative action of the HM phosphate and the turn motif phosphate, because it binds a phosphoSer/Thr-binding site above the glycine-rich loop within the kinase domain, promoting zipper-like association of the tail with the kinase domain, serving to stabilize the HM in its kinase-activating binding site. We present a molecular model for allosteric activation of AGC kinases by the turn motif phosphate via HM-mediated stabilization of the alphaC helix. In S6K and MSK, the turn motif phosphate thereby also protects the HM from dephosphorylation. Our results suggest that the mechanism described is a key feature in activation of upto 26 human AGC kinases. 相似文献
2.
Silber J Antal TL Gammeltoft S Rasmussen TE 《Biochemical and biophysical research communications》2004,321(4):823-827
Phosphoinositide-dependent kinase-1 (PDK1) mediates activation of many AGC kinases by docking onto a phosphorylated hydrophobic motif located C-terminal of the catalytic domain in the AGC kinase. The interaction shifts PDK1 into a conformation with increased catalytic activity and leads to autophosphorylation of PDK1. We demonstrate here that addition of a hydrophobic motif peptide increases the catalytic activity of PDK1 orthologues from Homo sapiens, Aplysia californica, Arabidopsis thaliana, Schizosaccharomyces pombe (ksg1), and Saccharomyces cerevisiae (Pkh1 and Pkh2) 2- to 12-fold. Furthermore, the hydrophobic motif peptide increases autophosphorylation of PDK1 from Homo sapiens, S. pombe, and S. cerevisiae (Phk2). Our results suggest that PDK1 interaction and activation by the hydrophobic motif of AGC kinases is a central mechanism in PDK1 function, which is conserved during eukaryotic evolution. 相似文献
3.
Ras proteins transduce extracellular signals to intracellular signaling pathways by binding to and promoting the activation of at least three classes of downstream signaling molecules: Raf kinases, phosphoinositide-3-kinase (PI3-K) and Ral guanine nucleotide exchange factors (Ral-GEFs). Previous work has demonstrated that epidermal growth factor (EGF) activates Ral-GEFs, at least in part, by a Ras-mediated redistribution of the GEFs to their target, Ral-GTPases, in the plasma membrane. Here we show that Ral-GEF stimulation by EGF involves an additional mechanism, PI3-K-dependent kinase 1 (PDK1)-induced enhancement of Ral-GEF catalytic activity. Remarkably, this PDK1 function is not dependent upon its kinase activity. Instead, the non-catalytic N-terminus of PDK1 mediates the formation of an EGF-induced complex with the N-terminus of the Ral-GEF, Ral-GDS, thereby relieving its auto-inhibitory effect on the catalytic domain of Ral-GDS. These results elucidate a novel function for PDK1 and demonstrate that two Ras effector pathways cooperate to promote Ral-GTPase activation. 相似文献
4.
5.
Komander D Kular G Deak M Alessi DR van Aalten DM 《The Journal of biological chemistry》2005,280(19):18797-18802
3-Phosphoinositide-dependent protein kinase-1 (PDK1) phosphorylates the T-loop of several AGC (cAMP-dependent, cGMP-dependent, protein kinase C) family protein kinases, resulting in their activation. Previous structural studies have revealed that the alpha C-helix, located in the small lobe of the kinase domain of PDK1, is a key regulatory element, as it links a substrate interacting site termed the hydrophobic motif (HM) pocket with the phosphorylated Ser-241 in the T-loop. In this study we have demonstrated by mutational analysis that interactions between the phosphorylated Ser-241 and the alpha C-helix are not required for PDK1 activity or substrate binding through the HM-pocket but are necessary for PDK1 to be activated or stabilized by a peptide that binds to this site. The structure of an inactive T-loop mutant of PDK1, in which Ser-241 is changed to Ala, was also determined. This structure, together with surface plasmon resonance binding studies, demonstrates that the PDK1(S241A)-inactive mutant possesses an intact HM-pocket as well as an ordered alpha C-helix. These findings reveal that the integrity of the alpha C-helix and HM-pocket in PDK1 is not regulated by T-loop phosphorylation. 相似文献
6.
Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases 总被引:7,自引:0,他引:7
Hefner Y Borsch-Haubold AG Murakami M Wilde JI Pasquet S Schieltz D Ghomashchi F Yates JR Armstrong CG Paterson A Cohen P Fukunaga R Hunter T Kudo I Watson SP Gelb MH 《The Journal of biological chemistry》2000,275(48):37542-37551
We have previously reported that in thrombin-stimulated human platelets, cytosolic phospholipase A(2) (cPLA2) is phosphorylated on Ser-505 by p38 protein kinase and on Ser-727 by an unknown kinase. Pharmacological inhibition of p38 leads to inhibition of cPLA2 phosphorylation at both Ser-505 and Ser-727 suggesting that the kinase responsible for phosphorylation on Ser-727 is activated in a p38-dependent pathway. By using Chinese hamster ovary, HeLa, and HEK293 cells stably transfected with wild type and phosphorylation site mutant forms of cPLA2, we show that phosphorylation of cPLA2 at both Ser-505 and Ser-727 and elevation of Ca(2+) leads to its activation in agonist-stimulated cells. The p38-activated protein kinases MNK1, MSK1, and PRAK1 phosphorylate cPLA2 in vitro uniquely on Ser-727 as shown by mass spectrometry. Furthermore, MNK1 and PRAK1, but not MSK1, is present in platelets and undergo modest activation in response to thrombin. Expression of a dominant negative form of MNK1 in HEK293 cells leads to significant inhibition of cPLA2-mediated arachidonate release. The results suggest that MNK1 or a closely related kinase is responsible for in vivo phosphorylation of cPLA2 on Ser-727. 相似文献
7.
Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation 总被引:11,自引:0,他引:11
Protein kinase B/Akt plays crucial roles in promoting cell survival and mediating insulin responses. The enzyme is stimulated by phosphorylation at two regulatory sites: Thr 309 of the activation segment and Ser 474 of the hydrophobic motif, a conserved feature of many AGC kinases. Analysis of the crystal structures of the unphosphorylated and Thr 309 phosphorylated states of the PKB kinase domain provides a molecular explanation for regulation by Ser 474 phosphorylation. Activation by Ser 474 phosphorylation occurs via a disorder to order transition of the alphaC helix with concomitant restructuring of the activation segment and reconfiguration of the kinase bilobal structure. These conformational changes are mediated by a phosphorylation-promoted interaction of the hydrophobic motif with a channel on the N-terminal lobe induced by the ordered alphaC helix and are mimicked by peptides corresponding to the hydrophobic motif of PKB and potently by the hydrophobic motif of PRK2. 相似文献
8.
The TOR protein is a phosphoinositide kinase-related kinase widely conserved among eukaryotes. Fission yeast tor1 encodes an ortholog of TOR, which is required for sexual development and growth under stressed conditions. We isolated gad8, which encodes a Ser/Thr kinase of the AGC family, as a high-copy suppressor of the sterility of a tor1 mutant. Disruption of gad8 caused phenotypes similar to those of tor1 disruption. Gad8p was less phosphorylated and its kinase activity was undetectable in tor1Delta cells. Three amino acid residues corresponding to conserved phosphorylation sites in the AGC family kinases, namely Thr387 in the activation loop, Ser527 in the turn motif and Ser546 in the hydrophobic motif, were important for the kinase activity of Gad8p. Tor1p was responsible for the phosphorylation of Ser527 and Ser546, whereas Ksg1p, a PDK1-like kinase, appeared to phosphorylate Thr387 directly. Altogether, Tor1p, Ksg1p and Gad8p appear to constitute a signaling module for sexual development and growth under stressed conditions in fission yeast, which resembles the mTOR-PDK1-S6K1 system in mammals and may represent a basic signaling module ubiquitous in eukaryotes. 相似文献
9.
10.
In this study, we examined the mechanism of inhibition of phosphoserine phosphatase (PSPase) activity by elevated [Ca2+]i in insulin target cells. In in vitro studies, isolated rat adipocytes were incubated with either 40 mM K+ or parathyroid hormone (PTH) (20 ng/ml) for 1 h. In in vivo studies, rats were injected with PTH (three hourly injections of 40 micrograms intraperitoneally) prior to isolation of either adipocytes or skeletal muscle. Under these conditions, intracellular [Ca2+]i changed from 100 +/- 8.7 to 263 +/- 10.5 nM. There was a concomitant 30% decrease in adipocyte PSPase activity and a 35% decrease in skeletal muscle PSPase activity, assayed using 32P-labeled phosphorylase "a" as a substrate. The inhibition of PSPase was accompanied by a 60% increase in adipocytes (p less than 0.05) and a 118% increase (p less than 0.01) in skeletal muscle inhibitor 1 (I1) activities, respectively. Since I1 is active only in the phosphorylated state, we studied the effect of [Ca2+]i on I1 phosphorylation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of heat treated extracts immunoprecipitated with I1 antibody revealed significant increase in 32P incorporation (45-60%, p less than 0.05) into I1 protein in cells with elevated [Ca2+]i. Nitrendipine, a calcium channel blocker, completely prevented increases in I1 phosphorylation and activity in cells exposed to K+ but was only partially effective in the PTH-treated cells. In contrast, a cyclic AMP antagonist, RpcAMP, prevented both the K(+)-and the PTH-induced increases in I1 phosphorylation and activity, even though it failed to block the elevations in [Ca2+]i in these cells. We conclude that [Ca2+]i-induced and cAMP-mediated phosphorylation and activation of I1 results in inhibition of PSPase activity in insulin target cells. The inhibition of PSPases may cause inappropriate serine dephosphorylation of substrates of insulin action resulting in insulin resistance. 相似文献
11.
mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1) 总被引:1,自引:0,他引:1
SGK1 (serum- and glucocorticoid-induced protein kinase 1) is a member of the AGC (protein kinase A/protein kinase G/protein kinase C) family of protein kinases and is activated by agonists including growth factors. SGK1 regulates diverse effects of extracellular agonists by phosphorylating regulatory proteins that control cellular processes such as ion transport and growth. Like other AGC family kinases, activation of SGK1 is triggered by phosphorylation of a threonine residue within the T-loop of the kinase domain and a serine residue lying within the C-terminal hydrophobic motif (Ser(422) in SGK1). PDK1 (phosphoinositide-dependent kinase 1) phosphorylates the T-loop of SGK1. The identity of the hydrophobic motif kinase is unclear. Recent work has established that mTORC1 [mTOR (mammalian target of rapamycin) complex 1] phosphorylates the hydrophobic motif of S6K (S6 kinase), whereas mTORC2 (mTOR complex 2) phosphorylates the hydrophobic motif of Akt (also known as protein kinase B). In the present study we demonstrate that SGK1 hydrophobic motif phosphorylation and activity is ablated in knockout fibroblasts possessing mTORC1 activity, but lacking the mTORC2 subunits rictor (rapamycin-insensitive companion of mTOR), Sin1 (stress-activated-protein-kinase-interacting protein 1) or mLST8 (mammalian lethal with SEC13 protein 8). Furthermore, phosphorylation of NDRG1 (N-myc downstream regulated gene 1), a physiological substrate of SGK1, was also abolished in rictor-, Sin1- or mLST8-deficient fibroblasts. mTORC2 immunoprecipitated from wild-type, but not from mLST8- or rictor-knockout cells, phosphorylated SGK1 at Ser(422). Consistent with mTORC1 not regulating SGK1, immunoprecipitated mTORC1 failed to phosphorylate SGK1 at Ser(422), under conditions which it phosphorylated the hydrophobic motif of S6K. Moreover, rapamycin treatment of HEK (human embryonic kidney)-293, MCF-7 or HeLa cells suppressed phosphorylation of S6K, without affecting SGK1 phosphorylation or activation. The findings of the present study indicate that mTORC2, but not mTORC1, plays a vital role in controlling the hydrophobic motif phosphorylation and activity of SGK1. Our findings may explain why in previous studies phosphorylation of substrates, such as FOXO (forkhead box O), that could be regulated by SGK, are reduced in mTORC2-deficient cells. The results of the present study indicate that NDRG1 phosphorylation represents an excellent biomarker for mTORC2 activity. 相似文献
12.
The non-receptor tyrosine kinase Abl participates in receptor tyrosine kinase (RTK)-induced actin cytoskeleton remodelling, a signalling pathway in which the function of Rac is pivotal. More importantly, the activity of Rac is indispensable for the leukaemogenic ability of the BCR-Abl oncoprotein. Thus, Rac might function downstream of Abl and be activated by it. Here, we elucidate the molecular mechanisms through which Abl signals to Rac in RTK-activated pathways. We show that Sos-1, a dual guanine nucleotide-exchange factor (GEF), is phosphorylated on tyrosine, after activation of RTKs, in an Abl-dependent manner. Sos-1 and Abl interact in vivo, and Abl-induced tyrosine phosphorylation of Sos-1 is sufficient to elicit its Rac-GEF activity in vitro. Genetic or pharmacological interference with Abl (and the related kinase Arg) resulted in a marked decrease in Rac activation induced by physiological doses of growth factors. Thus, our data identify the molecular connections of a pathway RTKs-Abl-Sos-1-Rac that is involved in signal transduction and actin remodelling. 相似文献
13.
Phosphoinositide-dependent protein kinase 1 (PDK1) plays a central role in cellular signaling by phosphorylating members of the AGC family of kinases. This family includes protein kinase C (PKC), protein kinase B (PKB), p70/p90 ribosomal S6 kinases (RSK and S6K), and the catalytic subunit of cAMP-dependent protein kinase (PKA). Although PDK1 phosphorylates and activates PKC, PKB, and RSK in vivo, PDK1 regulation of PKA remains controversial. We isolated ksg1, the fission yeast ortholog of mammalian PDK1, as a suppressor of growth defects caused by loss of the stress-activated MAP kinase, Spc1. Here, we demonstrate that Ksg1 is required for activation of PKA. Cells containing the ksg1.12 thermolabile allele exhibit pleiotropic phenotypes, including the failure to arrest in G(1) and an inability to conjugate. The ksg1.12 allele strongly suppresses defects associated with unregulated PKA. Pka1, the catalytic subunit of cAMP-dependent protein kinase, is phosphorylated in vivo at Thr-356, which is located in the activation loop of the kinase and corresponds to Thr-197 in mammalian PKA. Phosphorylation of Thr-356 is required for in vivo activation of Pka1 and is dependent upon Ksg1. These data provide experimental evidence that PKA is a physiological substrate for PDK1. 相似文献
14.
Aldolase plays essential catalytic roles in glycolysis and gluconeogenesis. However, aldolase is a highly abundant protein that is remarkably promiscuous in its interactions with other cellular proteins. In particular, aldolase binds to highly acidic amino acid sequences, including the C terminus of the Wiskott-Aldrich syndrome protein, an actin nucleation-promoting factor. Here we report the crystal structure of tetrameric rabbit muscle aldolase in complex with a C-terminal peptide of Wiskott-Aldrich syndrome protein. Aldolase recognizes a short, four-residue DEWD motif (residues 498-501), which adopts a loose hairpin turn that folds around the central aromatic residue, enabling its tryptophan side chain to fit into a hydrophobic pocket in the active site of aldolase. The flanking acidic residues in this binding motif provide further interactions with conserved aldolase active site residues Arg-42 and Arg-303, aligning their side chains and forming the sides of the hydrophobic pocket. The binding of Wiskott-Aldrich syndrome protein to aldolase precludes intramolecular interactions of its C terminus with its active site and is competitive with substrate as well as with binding by actin and cortactin. Finally, based on this structure, a novel naphthol phosphate-based inhibitor of aldolase was identified, and its structure in complex with aldolase demonstrated mimicry of the Wiskott-Aldrich syndrome protein-aldolase interaction. The data support a model whereby aldolase exists in distinct forms that regulate glycolysis or actin dynamics. 相似文献
15.
N-alpha-tosyl-l-phenylalanyl chloromethyl ketone (TPCK) has anti-tumorigenic properties, but its direct cellular targets are unknown. Previously, we showed TPCK inhibited the PDKl-dependent AGC kinases RSK, Akt and S6K1 without inhibiting PKA, ERK1/2, PI3K, and PDK1 itself. Here we show TPCK-inhibition of the RSK-related kinases MSK1 and 2, which can be activated independently of PDK1. Mass spectrometry analysis of RSK1, Aktl, S6K1 and MSK1 immunopurified from TPCK-treated cells identified TPCK adducts on cysteines located in conserved activation loop Phenylalanine-Cysteine (Phe-Cys) motifs. Mutational analysis of the Phe-Cys residues conferred partial TPCK resistance. These studies elucidate a primary mechanism by which TPCK inhibits several AGC kinases, inviting consideration of TPCK-like compounds in chemotherapy given their potential for broad control of cellular growth, proliferation and survival. 相似文献
16.
Barlow CA Barrett TF Shukla A Mossman BT Lounsbury KM 《American journal of physiology. Lung cellular and molecular physiology》2007,292(6):L1361-L1369
Asbestos is a ubiquitous, naturally occurring fiber that has been linked to the development of malignant and fibrotic lung diseases. Asbestos exposure leads to apoptosis, followed by compensatory proliferation, yet many of the signaling cascades coupled to these outcomes are unclear. Because CREs (Ca(2+)/cAMP-response elements) are found in the promoters of many genes important for regulation of proliferation and apoptosis, CREB (CRE binding protein) is likely to play an important role in the development of asbestos-mediated lung injury. To explore this possibility, we tested the hypotheses that asbestos exposure leads to CREB phosphorylation in lung epithelial cells and that protein kinase A (PKA) and extracellular signal-regulated kinases 1/2 (ERK1/2) are central regulators of the CREB pathway. Persistent CREB phosphorylation was observed in lung sections from mice following inhalation of crocidolite asbestos. Exposure of C10 lung epithelial cells to crocidolite asbestos led to rapid CREB phosphorylation and apoptosis that was decreased by the inhibition of PKA or ERK1/2 using the specific inhibitors H89 and U0126, respectively. Furthermore, crocidolite asbestos selectively induced a sustained increase in MAP kinase phosphatase-1 mRNA and protein. Silencing CREB protein dramatically reduced asbestos-mediated ERK1/2 phosphorylation, yet significantly increased the number of cells undergoing asbestos-induced apoptosis. These data reveal a novel and selective role for CREB in asbestos-mediated signaling through pathways regulated by PKA and ERK1/2, further providing evidence that CREB is an important regulator of apoptosis in asbestos-induced responses of lung epithelial cells. 相似文献
17.
The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB 总被引:12,自引:0,他引:12
PKB/Akt, S6K1 and SGK are related protein kinases activated in a PI 3-kinase-dependent manner in response to insulin/growth factors signalling. Activation entails phosphorylation of these kinases at two residues, the T-loop and the hydrophobic motif. PDK1 activates S6K, SGK and PKB isoforms by phosphorylating these kinases at their T-loop. We demonstrate that a pocket in the kinase domain of PDK1, termed the 'PIF-binding pocket', plays a key role in mediating the interaction and phosphorylation of S6K1 and SGK1 at their T-loop motif by PDK1. Our data indicate that prior phosphorylation of S6K1 and SGK1 at their hydrophobic motif promotes their interaction with the PIF-binding pocket of PDK1 and their T-loop phosphorylation. Thus, the hydrophobic motif phosphorylation of S6K and SGK converts them into substrates that can be activated by PDK1. In contrast, the PIF-binding pocket of PDK1 is not required for the phosphorylation of PKBalpha by PDK1. The PIF-binding pocket represents a substrate recognition site on a protein kinase that is only required for the phosphorylation of a subset of its physiological substrates. 相似文献
18.
Desiree DeMille Bryan D. Badal J. Brady Evans Andrew D. Mathis Joseph F. Anderson Julianne H. Grose 《Molecular biology of the cell》2015,26(3):569-582
We describe the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (AMPK, or SNF1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1). This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein binding protein 1 (Pbp1), which then inhibits TORC1 through sequestration at stress granules. The SNF1-dependent phosphorylation of Psk1 appears to be direct, in that Snf1 is necessary and sufficient for Psk1 activation by alternate carbon sources, is required for altered Psk1 protein mobility, is able to phosphorylate Psk1 in vitro, and binds Psk1 via its substrate-targeting subunit Gal83. Evidence for the direct phosphorylation and activation of Pbp1 by Psk1 is also provided by in vitro and in vivo kinase assays, including the reduction of Pbp1 localization at distinct cytoplasmic foci and subsequent rescue of TORC1 inhibition in PAS kinase–deficient yeast. In support of this signaling cascade, Snf1-deficient cells display increased TORC1 activity, whereas cells containing hyperactive Snf1 display a PAS kinase–dependent decrease in TORC1 activity. This interplay between yeast SNF1, Psk1, and TORC1 allows for proper glucose allocation during nutrient depletion, reducing cell growth and proliferation when energy is low. 相似文献
19.
The hydrophobic phosphorylation motif of conventional protein kinase C is regulated by autophosphorylation. 总被引:7,自引:0,他引:7
BACKGROUND: A growing number of kinases are now known to be controlled by two phosphorylation switches, one on a loop near the entrance to the active site and a second on the carboxyl terminus. For the protein kinase C (PKC) family of enzymes, phosphorylation at the activation loop is mediated by another kinase but the mechanism for carboxy-terminal phosphorylation is still unclear. The latter switch contains two phosphorylation sites - one on a 'turn' motif and the second on a conserved hydrophobic phosphorylation motif - that are found separately or together in a number of other kinases. RESULTS: Here, we investigated whether the carboxy-terminal phosphorylation sites of a conventional PKC are controlled by autophosphorylation or by another kinase. First, kinetic analyses revealed that a purified construct of the kinase domain of PKC betaII autophosphorylated on the Ser660 residue of the hydrophobic phosphorylation motif in an apparently concentration-independent manner. Second, kinase-inactive mutants of PKC did not incorporate phosphate at either of the carboxy-terminal sites, Thr641 or Ser660, when expressed in COS-7 cells. The inability to incorporate phosphate on the hydrophobic site was unrelated to the phosphorylation state of the other key phosphorylation sites: kinase-inactive mutants with negative charge at Thr641 and/or the activation-loop position were also not phosphorylated in vivo. CONCLUSIONS: PKC betaII autophosphorylates at its conserved carboxy-terminal hydrophobic phosphorylation site by an apparently intramolecular mechanism. Expression studies with kinase-inactive mutants revealed that this mechanism is the only one responsible for phosphorylating this motif in vivo. Thus, conventional PKC autoregulates the carboxy-terminal phosphorylation switch following phosphorylation by another kinase at the activation loop switch. 相似文献
20.
BACKGROUND: In animal cells, recruitment of phosphatidylinositol 3-kinase by growth factor receptors generates 3-phosphoinositides, which stimulate 3-phosphoinositide-dependent protein kinase-1 (PDK1). Activated PDK1 then phosphorylates and activates downstream protein kinases, including protein kinase B (PKB)/c-Akt, p70 S6 kinase, PKC isoforms, and serum- and glucocorticoid-inducible kinase (SGK), thereby eliciting physiological responses. RESULTS: We found that two previously uncharacterised genes of Saccharomyces cerevisiae, which we term PKH1 and PKH2, encode protein kinases with catalytic domains closely resembling those of human and Drosophila PDK1. Both Pkh1 and Pkh2 were essential for cell viability. Expression of human PDK1 in otherwise inviable pkh1Delta pkh2Delta cells permitted growth. In addition, the yeast YPK1 and YKR2 genes were found to encode protein kinases each with a catalytic domain closely resembling that of SGK; both Ypk1 and Ykr2 were also essential for viability. Otherwise inviable ypk1Delta ykr2Delta cells were fully rescued by expression of rat SGK, but not mouse PKB or rat p70 S6 kinase. Purified Pkh1 activated mammalian SGK and PKBalpha in vitro by phosphorylating the same residue as PDK1. Pkh1 activated purified Ypk1 by phosphorylating the equivalent residue (Thr504) and was required for maximal Ypk1 phosphorylation in vivo. Unlike PKB, activation of Ypk1 and SGK by Pkh1 did not require phosphatidylinositol 3,4,5-trisphosphate, consistent with the absence of pleckstrin homology domains in these proteins. The phosphorylation consensus sequence for Ypk1 was similar to that for PKBalpha and SGK. CONCLUSIONS: Pkh1 and Pkh2 function similarly to PDK1, and Ypk1 and Ykr2 to SGK. As in animal cells, these two groups of yeast kinases constitute two tiers of a signalling cascade required for yeast cell growth. 相似文献