首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Esters of succinic acid are potent insulin secretagogues, and have been proposed as novel antidiabetic agents for type 2 diabetes. This study examines the effects of acute and chronic exposure to succinic acid monomethyl ester (SAM) on insulin secretion, glucose metabolism and pancreatic beta cell function using the BRIN-BD11 cell line. SAM stimulated insulin release in a dose-dependent manner at both non-stimulatory (1.1mM) and stimulatory (16.7mM) glucose. The depolarizing actions of arginine also stimulated a significant increase in SAM-induced insulin release but 2-ketoisocaproic acid (KIC) inhibited SAM induced insulin secretion indicating a possible competition between the preferential oxidative metabolism of these two agents. Prolonged (18hour) exposure to SAM revealed decreases in the insulin-secretory responses to glucose, KIC, glyceraldehyde and alanine. Furthermore, SAM diminished the effects of nonmetabolized secretagogues arginine and 3-isobutyl-1-methylxanthine (IBMX). While the ability of BRIN-BD11 cells to oxidise glucose was unaffected by SAM culture, glucose utilization was substantially reduced. Collectively, these data suggest that while SAM may enhance the secretory potential of non-metabolized secretagogues, it may also serve as a preferential metabolic fuel in preference to other important physiological nutrients and compromise pancreatic beta cell function following prolonged exposure.  相似文献   

2.
Long-term exposure of the pancreatic beta cells to free fatty acid (FFA) reportedly inhibits glucose-stimulated insulin secretion. We here studied the impact of FFA on glucose and lipid metabolism in pancreatic beta cells with special reference to insulin secretion. Pancreatic beta-cell line MIN6 was exposed to various concentrations of palmitate for 3 days. Glucose-stimulated insulin secretion and insulin content were decreased corresponding to the concentration of the palmitate exposed. Glycolytic flux and ATP synthesis was unchanged, but pyruvate-stimulated change in NAD(P)H concentration was decreased. Pyruvate carboxylase was decreased at the protein level, which was restored by the removal of palmitate or the inhibition of beta-oxidation. Intracellular content of triglyceride and FFA were elevated, beta-oxidation was increased, and de novo lipogenesis from glucose was decreased. NADPH content and citrate output into the medium, which reflected pyruvate malate shuttle flux, were decreased, but malic enzyme activity was unaffected. The malic enzyme inhibitor alone inhibited insulin response to glucose. In conclusion, long-term exposure of FFA to beta cells inhibits glucose-stimulated insulin secretion via the decreased NADPH contents due to the inhibition of pyruvate carboxylase and malate pyruvate shuttle flux.  相似文献   

3.
A novel insulin-secreting cell line, BRIN-BD11, was recently established following electrofusion of RINm5F cells with NEDH rat pancreatic islet cells. In the present study,d-glucose metabolism was compared in BRIN-BD11 and RINm5F cells. The concentration dependency ofd-[5-3H]glucose utilization displayed a comparable pattern in the two cell lines, but the absolute values were lower in BRIN-BD11 than RINm5F cells. Except in the case ofd-[1-14C]glucose, the ratio between14C labeledd-glucose oxidation andd-[5-3H]glucose utilization was higher, however, in BRIN-BD11 than RINm5F cells. Moreover, BRIN-BD11 cells were less affected than RINm5F cells by a rise ind-glucose concentration, in terms of the inhibitory action of the hexose upon oxidative variables, such as oxidative glycolysis, pyruvate decarboxylation, and oxidation of glucose-derived acetyl residues in the Krebs cycle. The total energy yield fromd-glucose catabolism appeared similar, however, in BRIN-BD11 and RINm5F cells. These findings extend the knowledge that BRIN-BD11 cells display an improved metabolic and secretory behavior, when considering the difference otherwise found between normal and tumoral islet cells.  相似文献   

4.
The effects of two representative sulfonylureas, tolbutamide and glyburide, on pyruvate kinase (PK) flux were examined in fasted rat hepatocytes. PK flux was estimated by trapping 14C from NaH14CO3 in a 2 mM lactate pool, accounting for any incomplete trapping by parallel incubations with L-[1-14C]alanine. Glyburide (20 microM) and tolbutamide (1 mM) decreased glucose formation by 34.9% and 54.8%, respectively, from 2 mM lactate. This decrease in glucose formation was associated with a proportional decrease in pyruvate carboxylase (PCOX) flux (32.7% and 50.5%, respectively). Under these conditions, no net change in PK flux was observed. When hepatocytes were preincubated with lactate and/or sulfonylurea addition for 30 min prior to radiolabeling with NaH14CO3, the metabolic state of the cells changed markedly. Glyburide produced a 34.6% decrease in glucose formation and a 31.3% decrease in PCOX flux, but no change in PK flux. In contrast, tolbutamide decreased glucose formation by 12.5% and increased PK flux by 53.2%, but no change in PCOX flux was observed. Such an increase in PK flux may be linked to tolbutamide-mediated increases in fructose-1,6-bisphosphate (F16P) via fructose-2,6-bisphosphate (F26P). These findings demonstrate that tolbutamide and glyburide decrease hepatic glucose production through various alterations in carbohydrate metabolism, depending upon the metabolic state of the cell. In addition, F26P may play a larger role in the hypoglycemic mechanism of action of tolbutamide than glyburide, since pyruvate carboxylase accounted for most of the decrease in glucose formation observed with glyburide and because preincubation with tolbutamide resulted in an activation of PK.  相似文献   

5.
K(ATP)-channel-dependent and K(ATP)-channel-independent insulin-releasing actions of the sulfonylurea, tolbutamide, were examined in the clonal BRIN-BD11 cell line. Tolbutamide stimulated insulin release at both nonstimulatory (1.1 mM) and stimulatory (16. 7 mM) glucose. Under depolarizing conditions (16.7 mM glucose plus 30 mM KCl) tolbutamide evoked a stepwise K(ATP) channel-independent insulinotropic response. Culture (18 h) with tolbutamide or the guanidine derivative BTS 67 582 (100 microM) markedly reduced (P < 0. 001) subsequent responsiveness to acute challenge with tolbutamide, glibenclamide, and BTS 67 582 but not the imidazoline drug, efaroxan. Conversely, 18 h culture with efaroxan reduced (P < 0.001) subsequent insulinotropic effects of efaroxan but not that of tolbutamide, glibenclamide, or BTS 67 582. Culture (18 h) with tolbutamide reduced the K(ATP) channel-independent actions of both tolbutamide and glibenclamide. Whereas culture with efaroxan exerted no effect on the K(ATP) channel-independent actions of sulfonylureas, BTS 67 582 abolished the response of tolbutamide and inhibited that of glibenclamide. These data demonstrate that prolonged exposure to tolbutamide desensitizes both K(ATP)-channel-dependent and -independent insulin-secretory actions of sulfonylureas, indicating synergistic pathways mediated by common sulfonylurea binding site(s).  相似文献   

6.
Homocysteine and related amino thiols, homocysteic acid, cysteic acid, homocysteine sulphinic acid and cysteine sulphinic acid have been labelled as neurotoxins. Homocysteine thiolactone, a metabolic derivative of homocysteine, is cytotoxic to endothelial cells and other cell lineages. Since pancreatic beta cells share many phenotypic similarities with neuronal cells, the present study uses clonal pancreatic BRIN-BD11 cells to investigate possible detrimental effects of these amino thiols on insulin secretion and pancreatic beta cell function. Insulin secretion was concentration-dependently inhibited at both basal (1.1 mM) and stimulatory (16.7 mM) glucose by homocysteine, homocysteine thiolactone and homocysteine sulphinic acid. Cysteic acid concentration-dependently inhibited insulin secretion at 16.7 mM glucose. Cell viability was not compromised by any of the amino thiols. Insulin secretory responses to alanine were inhibited by homocysteine, homocysteine thiolactone, homocysteic acid and cysteic acid. Insulin secretion in the presence of elevated Ca(2+) and forskolin were lowered by all amino thiols, except homocysteic acid. The secretory responsiveness to PMA, GLP-1 and KCl were only impaired in the presence of homocysteine and homocysteine thiolactone. These findings indicate that homocysteine, homocysteine thiolactone and, to a lesser extent, other amino thiols cause dysfunctional insulin secretion from pancreatic beta cells.  相似文献   

7.
Several studies have shown that organophosphate pesticides affect carbohydrate metabolism and produce hyperglycemia. It has been reported that exposure to the organophosphate pesticide dichlorvos affects glucose homeostasis and decreases liver glycogen content. Glucokinase (EC 2.7.1.1) is a tissue-specific enzyme expressed in liver and in pancreatic beta cells that plays a crucial role in glycogen synthesis and glucose homeostasis. In the present study we analyzed the effect of one or three days of dichlorvos administration [20 mg/kg body weight] on the activity and mRNA levels of hepatic and pancreatic glucokinase as well as on insulin mRNA abundance in the rat. We found that the pesticide affects pancreatic and hepatic glucokinase activity and expression differently. In the liver the pesticide decreased the enzyme activity; on the contrary glucokinase mRNA levels were increased. In contrast, pancreatic glucokinase activity as well as mRNA levels were not affected by the treatment. Insulin mRNA levels were not modified by dichlorvos administration. Our results suggest that the decreased activity of hepatic glucokinase may account for the adverse effects of dichlorvos on glucose metabolism.  相似文献   

8.
13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells   总被引:6,自引:0,他引:6  
Anaplerotic flux into the Kreb's cycle is crucial for glucose-stimulated insulin secretion from pancreatic beta-cells. However, the regulation of flux through various anaplerotic pathways in response to combinations of physiologically relevant substrates and its impact on glucose-stimulated insulin secretion is unclear. Because different pathways of anaplerosis generate distinct products, they may differentially modulate the insulin secretory response. To examine this question, we applied 13C-isotopomer analysis to quantify flux through three anaplerotic pathways: 1) pyruvate carboxylase of pyruvate derived from glycolytic sources; 2) pyruvate carboxylase of pyruvate derived from nonglycolytic sources; and 3) glutamate dehydrogenase (GDH). At substimulatory glucose, anaplerotic flux rate in the clonal INS-1 832/13 cells was approximately 40% of Kreb's cycle flux, with similar contributions from each pathway. Increasing glucose to 15 mm stimulated insulin secretion approximately 4-fold, and was associated with a approximately 4-fold increase in anaplerotic flux that could mostly be attributed to an increase in PC flux. In contrast, the addition of glutamine to the perfusion media stimulated GDH flux approximately 6-fold at both glucose concentrations without affecting insulin secretion rates. In conclusion, these data support the hypothesis that a signal generated by anaplerosis from increased pyruvate carboxylase flux is essential for glucose-stimulated insulin secretion in beta-cells and that anaplerosis through GDH does not play a major role in this process.  相似文献   

9.
KATP-channel activity, recorded in cell-attached patches from isolated rat pancreatic beta-cells, was found to be maximally inhibited in the presence of a substimulatory concentration (5 mM) of glucose, with no further effect of higher, stimulatory glucose concentrations. KATP channel-independent effects of glucose on electrical activity were therefore investigated by incubating cells in the presence of a supramaximal concentration of tolbutamide. Addition of tolbutamide (500 mM) to cells equilibrated in the absence of glucose resulted in a rapid depolarization and electrical activity followed by a gradual repolarization and disappearence of electrical activity. Repolarization was not due to desensitization of KATP channels to the sulfonylurea, but was probably the result of activation of another K+ conductance. The subsequent application of 16 mM glucose in the continued presence of tolbutamide depolarized the cells again, leading to renewed electrical activity. Input conductance of the cells was markedly reduced by tolbutamide, reflecting KATP-channel inhibition, but was not significantly affected by the addition of glucose in the presence of the drug. In cells voltage-clamped at -70 mV, addition of glucose in the presence of tolbutamide generated a noisy inward current, probably representing activation of the volume-sensitive anion channel. KATP channel-independent activation of electrical activity by glucose was inhibited by the anion channel inhibitor 4,4'-dithiocyanatostilbene-2,2'-disulphonic acid. It is concluded that the induction of electrical activity in rat pancreatic b-cells does not require inhibition of KATP channels. The KATP channel-independent mechanism could involve, at least in part, activation by glucose of the volume-sensitive anion channel.  相似文献   

10.
Using clonal insulin-secreting BRIN-BD11 cells, we have assessed whether the graded response of the whole cell population to glucose can be accounted for by a dose-dependent recruitment of individual cells, an amplification of the response of the recruited cells or both. Cytosolic free Ca(2+) concentration ([Ca(2+)](i)) is an established index of beta-cell function. We used fura-2 microfluorescence techniques to assess the [Ca(2+)](i) responsiveness of single BRIN-BD11 cells to glucose and other secretagogues. Glucose (1-16.7 mM) evoked oscillatory [Ca(2+)](i) rises in these cells resembling those found in parental rat pancreatic beta-cells. The percentage of glucose-responsive cells was 11% at 1 mM and increased to 40-70% at 3-16.7 mM glucose, as assessed by a single-stimulation protocol. This profile was unrelated to possible differences in the cell cycle, as inferred from experiments where the cultured cells were synchronized by a double thymidine block protocol. Individual cells exhibited variable sensitivities to glucose (threshold range: 1-5 mM) and a variable dose-dependent amplification of the [Ca(2+)](i) responses (EC(50) range: 2-10 mM), as assessed by a multiple-stimulation protocol. Glyceraldehyde and alpha-ketoisocaproic acid had glucose-like effects on [Ca(2+)](i). The data support a mixed model for the activation of insulin-secreting cells. Specifically, the graded secretory response of the whole cell population is likely to reflect both a recruitment of individual cells with different sensitivities to glucose and a dose-dependent amplification of the response of the recruited cells.  相似文献   

11.
In the perfused pancreas from normal SD rats, AD-4610 (0.01-0.1 mM) potentiated biphasic insulin secretion induced by 7.5 mM of glucose. The concentration-response curve of insulin secretion to glucose was shifted leftwards with AD-4610 (0.1 mM) without altering either the threshold concentration of glucose to induce insulin secretion or the maximal insulin response to glucose, indicating increased sensitivity of the pancreatic B-cells to glucose. On the other hand, AD-4610 was 10-fold less effective in altering insulin secretion induced by arginine and glyceraldehyde. The effect of AD-4610 on insulin secretion and glucose metabolism was compared with that of tolbutamide in vivo. AD-4610 (100 mg/kg) potentiated insulin secretion induced by an intravenous glucose load, and also accelerated glucose metabolism without altering basal insulin secretion in normal rats. On the other hand, tolbutamide (20 mg/kg) increased basal insulin secretion, but slightly decreased glucose-induced insulin secretion. In yellow KK mice with hyperglycemia, AD-4610 (10-100 mg/kg) had a dose-dependent hypoglycemic action, but tolbutamide did not. Thus, AD-4610 stimulated insulin secretion in a glucose-dependent fashion and enhanced glucose metabolism in vivo. These results suggest that AD-4610 selectively potentiates glucose-induced insulin secretion by increasing the sensitivity of pancreatic B-cells to glucose and may be useful for treating human NIDDM through a different mechanism than that of tolbutamide.  相似文献   

12.
Pancreatic beta cells are hyper-responsive to amino acids but have decreased glucose sensitivity after deletion of the sulfonylurea receptor 1 (SUR1) both in man and mouse. It was hypothesized that these defects are the consequence of impaired integration of amino acid, glucose, and energy metabolism in beta cells. We used gas chromatography-mass spectrometry methodology to study intermediary metabolism of SUR1 knock-out (SUR1(-/-)) and control mouse islets with d-[U-(13)C]glucose as substrate and related the results to insulin secretion. The levels and isotope labeling of alanine, aspartate, glutamate, glutamine, and gamma-aminobutyric acid (GABA) served as indicators of intermediary metabolism. We found that the GABA shunt of SUR1(-/-) islets is blocked by about 75% and showed that this defect is due to decreased glutamate decarboxylase synthesis, probably caused by elevated free intracellular calcium. Glutaminolysis stimulated by the leucine analogue d,l-beta-2-amino-2-norbornane-carboxylic acid was, however, enhanced in SUR1(-/-) and glyburide-treated SUR1(+/+) islets. Glucose oxidation and pyruvate cycling was increased in SUR1(-/-) islets at low glucose but was the same as in controls at high glucose. Malic enzyme isoforms 1, 2, and 3, involved in pyruvate cycling, were all expressed in islets. High glucose lowered aspartate and stimulated glutamine synthesis similarly in controls and SUR1(-/-) islets. The data suggest that the interruption of the GABA shunt and the lack of glucose regulation of pyruvate cycling may cause the glucose insensitivity of the SUR1(-/-) islets but that enhanced basal pyruvate cycling, lowered GABA shunt flux, and enhanced glutaminolytic capacity may sensitize the beta cells to amino acid stimulation.  相似文献   

13.
In islet beta-cells and INS-1 cells both the high activity of malic enzyme and the correlation of insulin secretion rates with pyruvate carboxylase (PC) flux suggest that a pyruvate-malate cycle is functionally relevant to insulin secretion. Expression of the malic enzyme isoforms in INS-1 cells and rat islets was measured, and small interfering RNA was used to selectively reduce isoform mRNA expression in INS-1 cells to evaluate its impact on insulin secretion. The cytosolic NADP(+)-specific isoform (ME1) was the most abundant, with the mitochondrial isoforms NAD(+)-preferred (ME2) expressed at approximately 50%, and the NADP(+)-specific (ME3) at approximately 10% compared with ME1. Selective reduction (89 +/- 2%) of cytosolic ME1 mRNA expression and enzyme activity significantly reduced glucose (15 mM:41 +/- 6%, p < 0.01) and amino acid (4 mM glutamine +/- 10 mM leucine: 39 +/- 6%, p < 0.01)-stimulated insulin secretion. Selective small interfering RNA reduction (51 +/- 6%) of mitochondrial ME2 mRNA expression did not impact glucose-induced insulin secretion, but decreased amino acid-stimulated insulin secretion by 25 +/- 4% (p < 0.01). Modeling of the metabolism of [U-(13)C]glucose by its isotopic distribution in glutamate indicates a second pool of pyruvate distinct from glycolytically derived pyruvate in INS-1 cells. ME1 knockdown decreased flux of both pools of pyruvate through PC. In contrast, ME2 knockdown affected only PC flux of the pyruvate derived from glutamate metabolism. These results suggest a physiological basis for two metabolically and functionally distinct pyruvate cycles. The cycling of pyruvate by ME1 generates cytosolic NADPH, whereas mitochondrial ME2 responds to elevated amino acids and serves to supply sufficient pyruvate for increased Krebs cycle flux when glucose is limiting.  相似文献   

14.
Li+ effects on glucose metabolism and on the competitive metabolism of glucose and lactate were investigated in the human neuroblastoma SH-SY5Y cell line using 13C NMR spectroscopy. The metabolic model proposed for glucose and lactate metabolism in these cells, based on tcaCALC best fitting solutions, for both control and Li+ conditions, was consistent with: (i) a single pyruvate pool; (ii) anaplerotic flux from endogenous unlabelled substrates; (iii) no cycling between pyruvate and oxaloacetate. Li+ was shown to induce a 38 and 53% decrease, for 1 and 15 mM Li+, respectively, in the rate of glucose conversion into pyruvate, when [U-13C]glucose was present, while no effects on lactate production were observed. Pyruvate oxidation by the tricarboxylic acid cycle and citrate synthase flux were shown to be significantly reduced by 64 and 84% in the presence of 1 and 15 mM Li+, respectively, suggesting a direct inhibitory effect of Li+ on tricarboxylic acid cycle flux. This work also showed that when both glucose and lactate are present as energetic substrates, SH-SY5Y cells preferentially consumed exogenous lactate over glucose, as 62% of the acetyl-CoA was derived from [3-13C]lactate while only 26% was derived from [U-13C]glucose. Li+ did not significantly affect the relative utilisation of these two substrates by the cells or the residual contribution of unlabelled endogenous sources for the acetyl-CoA pool.  相似文献   

15.
We studied the effects of sodium valproate, a widely used antiepileptic drug and a hyperammonemic agent, on L-[1-14C]glutamine and L-[1-14C]glutamate metabolism in isolated human kidney-cortex tubules. Valproate markedly stimulated glutamine removal as well as the formation of ammonia, 14CO2, pyruvate, lactate and alanine, but it inhibited glucose synthesis; the increase in ammonia formation was explained by a stimulation by valproate mainly of flux through glutaminase (EC 3.5.1.2) and to a much lesser extent of flux through glutamate dehydrogenase (EC 1.4.1.3). By contrast, valproate did not stimulate glutamate removal or ammonia formation, suggesting that the increase in flux through glutamate dehydrogenase observed with glutamine as substrate was secondary to the increase in flux through glutaminase. Accumulation of pyruvate, alanine and lactate in the presence of valproate was less from glutamate than from glutamine. Inhibition by aminooxyacetate of accumulation of alanine from glutamine caused by valproate did not prevent the acceleration of glutamine utilization and the subsequent stimulation of ammonia formation. It is concluded from these data, which are the first concerning the in vitro metabolism of glutamine and glutamate in human kidney-cortex tubules, that the stimulatory effect of valproate is primarily exerted at the level of glutaminase in human renal cortex.  相似文献   

16.

Background

Chronic exposure to hyperglycaemic conditions has been shown to have detrimental effects on beta cell function. The resulting glucotoxicity is a contributing factor to the development of type 2 diabetes. The objective of this study was to combine a metabolomics approach with functional assays to gain insight into the mechanism by which glucotoxicity exerts its effects.

Methods

The BRIN-BD11 and INS-1E beta cell lines were cultured in 25 mM glucose for 20 h to mimic glucotoxic effects. PDK-2 protein expression, intracellular glutathione levels and the change in mitochondrial membrane potential and intracellular calcium following glucose stimulation were determined. Metabolomic analysis of beta cell metabolite extracts was performed using GC–MS, 1H NMR and 13C NMR.

Results

Conditions to mimic glucotoxicity were established and resulted in no loss of cellular viability in either cell line while causing a decrease in insulin secretion. Metabolomic analysis of beta cells following exposure to high glucose revealed a change in amino acids, an increase in glucose and a decrease in phospho-choline, n−3 and n−6 PUFAs during glucose stimulated insulin secretion relative to cells cultured under control conditions. However, no changes in calcium handling or mitochondrial membrane potential were evident.

Conclusions

Results indicate that a decrease in TCA cycle metabolism in combination with an alteration in fatty acid composition and phosphocholine levels may play a role in glucotoxicity induced impairment of glucose stimulated insulin secretion.

General significance

Alterations in certain metabolic pathways play a role in glucotoxicity in the pancreatic beta cell.  相似文献   

17.
Pancreatic beta cells secrete insulin in response to changes in the extracellular glucose. However, prolonged exposure to elevated glucose exerts toxic effects on beta cells and results in beta cell dysfunction and ultimately beta cell death (glucose toxicity). To investigate the mechanism of how increased extracellular glucose is toxic to beta cells, we used two model systems where glucose metabolism was increased in beta cell lines by enhancing glucokinase (GK) activity and exposing cells to physiologically relevant increases in extracellular glucose (3.3-20 mm). Exposure of cells with enhanced GK activity to 20 mm glucose accelerated glycolysis, but reduced cellular NAD(P)H and ATP, caused accumulation of intracellular reactive oxygen species (ROS) and oxidative damage to mitochondria and DNA, and promoted apoptotic cell death. These changes required both enhanced GK activity and exposure to elevated extracellular glucose. A ROS scavenger partially prevented the toxic effects of increased glucose metabolism. These results indicate that increased glucose metabolism in beta cells generates oxidative stress and impairs cell function and survival; this may be a mechanism of glucose toxicity in beta cells. The level of beta cell GK may also be critical in this process.  相似文献   

18.
In bakers' yeast, an immediate alcoholic fermentation begins when a glucose pulse is added to glucose-limited, aerobically grown cells. The mechanism of this short-term Crabtree effect was investigated via a comparative enzymic analysis of eight yeast species. It was established that the fermentation rate of the organisms upon transition from glucose limitation to glucose excess is positively correlated with the level of pyruvate decarboxylase (EC 4.1.1.1). In the Crabtree-negative yeasts, the pyruvate decarboxylase activity was low and did not increase when excess glucose was added. In contrast, in the Crabtree-positive yeasts, the activity of this enzyme was on the average sixfold higher and increased after exposure to glucose excess. In Crabtree-negative species, relatively high activities of acetaldehyde dehydrogenases (EC 1.2.1.4 and EC 1.2.1.5) and acetyl coenzyme A synthetase (EC 6.2.1.1), in addition to low pyruvate decarboxylase activities, were present. Thus, in these yeasts, acetaldehyde can be effectively oxidized via a bypass that circumvents the reduction of acetaldehyde to ethanol. Growth rates of most Crabtree-positive yeasts did not increase upon transition from glucose limitation to glucose excess. In contrast, the Crabtree-negative yeasts exhibited enhanced rates of biomass production which in most cases could be ascribed to the intracellular accumulation of reserve carbohydrates. Generally, the glucose consumption rate after a glucose pulse was higher in the Crabtree-positive yeasts than in the Crabtree-negative yeasts. However, the respiratory capacities of steady-state cultures of Crabtree-positive yeasts were not significantly different from those of Crabtree-negative yeasts. Thus, a limited respiratory capacity is not the primary cause of the Crabtree effect in yeasts. Instead, the difference between Crabtree-positive and Crabtree-negative yeasts is attributed to differences in the kinetics of glucose uptake, synthesis of reserve carbohydrates, and pyruvate metabolism.  相似文献   

19.
The regulation of flux through pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC) by fatty acids and glucagon was studied in situ, in intact hepatocyte suspensions. The rate of pyruvate metabolized by carboxylation plus decarboxylation was determined from the incorporation of [1-14C]pyruvate into 14CO2 plus [14C]glucose. The flux through PDH was determined from the rate of formation of 14CO2 from [1-14C]pyruvate corrected for other decarboxylation reactions (citrate cycle, phosphoenolpyruvate carboxykinase and malic enzyme), and the flux through PC was determined by subtracting the flux through PDH from the total pyruvate metabolized. With 0.5 mM pyruvate as substrate the ratio of flux through PDH/PC was 1.9 in hepatocytes from fed rats and 1.4 in hepatocytes from 24 h-starved rats. In hepatocytes from fed rats, octanoate (0.8 mM) and palmitate (0.5 mM) increased the flux through PDH (59-76%) and PC (80-83%) without altering the PDH/PC flux ratios. Glucagon did not affect the flux through PDH but it increased the flux through PC twofold, thereby decreasing the PDH/PC flux ratio to the value of hepatocytes from starved rats. In hepatocytes from starved rats, fatty acids had similar effects on pyruvate metabolism as in hepatocytes from fed rats, however glucagon did not increase the flux through PC. 2[5(4-Chlorophenyl)pentyl]oxirane-2-carboxylate (100 microM) an inhibitor of carnitine palmitoyl transferase I, reversed the palmitate-stimulated but not the octanoate-stimulated flux through PDH, in cells from fed rats, indicating that the effects of fatty acids on PDH are secondary to the beta-oxidation of fatty acids. This inhibitor also reversed the stimulatory effect of palmitate on PC and partially inhibited the flux through PC in the presence of octanoate suggesting an effect of POCA independent of fatty acid oxidation. It is concluded that the effects of fatty acids on pyruvate metabolism are probably secondary to increased pyruvate uptake by mitochondria in exchange for acetoacetate. Glucagon favours the partitioning of pyruvate towards carboxylation, by increasing the flux through pyruvate carboxylase, without directly inhibiting the flux through PDH.  相似文献   

20.
Recent evidence of a pyruvate malate shuttle capable of transporting a large amount of NADPH equivalents out of mitochondria in pancreatic islets suggests that cytosolic NADP(H) plays a role in beta cell metabolism. To obtain clues about these processes the activities of several NADPH-utilizing enzymes were estimated in pancreatic islets. Low levels of pyrroquinolone quinone (PQQ) and low levels of enzyme activity that reduce PQQ were found in islets. Low activities of palmitoyl-CoA and stearoyl-CoA desaturases were also detected. Significant activities of glutathione reductase, aldose reductase (EC.1.1.1.21) and aldehyde reductase (EC.1.1.1.2) were present in islets. Potent inhibitors of aldehyde and aldose reductases inhibited neither glucose-induced insulin release nor glucose metabolism in islets indicating that these reductases are not directly involved in glucose-induced insulin reaction. Over 90% of aldose reductase plus aldehyde reductase enzyme activity was present in the cytosol. Kinetic and chromatographic studies indicated that 60-70% of this activity in cytosol was due to aldehyde reductase and the remainder due to aldose reductase. Aldehyde reductase-like enzyme activity, as well as aldose reductase immunoreactivity, was detected in rat islet plasma membrane fractions purified by a polyethylene glycol-Dextran gradient or by a sucrose gradient. This is interesting in view of the fact that voltage-gated potassium channel beta subunits that contain aldehyde and aldose reductase-like NADPH-binding motifs have been detected in plasma membrane fractions of islets [Receptors and Channels 7: 237-243, 2000] and suggests that NADPH might have a yet unknown function in regulating activity of these potassium channels. Reductases may be present in cytosol to protect the insulin cell from molecules that cause oxidative injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号