首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bovine spongiform encephalopathy (BSE), the prion disease in cattle, was widely believed to be caused by only one strain, BSE-C. BSE-C causes the fatal prion disease named new variant Creutzfeldt-Jacob disease in humans. Two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H, have been discovered in several countries since 2004; their transmissibility and phenotypes in humans are unknown. We investigated the infectivity and human phenotype of BASE strains by inoculating transgenic (Tg) mice expressing the human prion protein with brain homogenates from two BASE strain-infected cattle. Sixty percent of the inoculated Tg mice became infected after 20 to 22 months of incubation, a transmission rate higher than those reported for BSE-C. A quarter of BASE strain-infected Tg mice, but none of the Tg mice infected with prions causing a sporadic human prion disease, showed the presence of pathogenic prion protein isoforms in the spleen, indicating that the BASE prion is intrinsically lymphotropic. The pathological prion protein isoforms in BASE strain-infected humanized Tg mouse brains are different from those from the original cattle BASE or sporadic human prion disease. Minimal brain spongiosis and long incubation times are observed for the BASE strain-infected Tg mice. These results suggest that in humans, the BASE strain is a more virulent BSE strain and likely lymphotropic.  相似文献   

2.

Background  

The definite diagnosis of prion diseases such as Creutzfeldt-Jakob disease (CJD) in humans or bovine spongiform encephalopathy (BSE) in cattle currently relies on the post mortem detection of the pathological form of the prion protein (PrPSc) in brain tissue. Infectivity studies indicate that PrPSc may also be present in body fluids, even at presymptomatic stages of the disease, albeit at concentrations well below the detection limits of currently available analytical methods.  相似文献   

3.
The amyloidotic form of bovine spongiform encephalopathy (BSE) termed BASE is caused by a prion strain whose biological properties differ from those of typical BSE, resulting in a clinically and pathologically distinct phenotype. Whether peripheral tissues of BASE-affected cattle contain infectivity is unknown. This is a critical issue since the BASE prion is readily transmissible to a variety of hosts including primates, suggesting that humans may be susceptible. We carried out bioassays in transgenic mice overexpressing bovine PrP (Tgbov XV) and found infectivity in a variety of skeletal muscles from cattle with natural and experimental BASE. Noteworthy, all BASE muscles used for inoculation transmitted disease, although the attack rate differed between experimental and natural cases (~70% versus ~10%, respectively). This difference was likely related to different prion titers, possibly due to different stages of disease in the two conditions, i.e. terminal stage in experimental BASE and pre-symptomatic stage in natural BASE. The neuropathological phenotype and PrP(res) type were consistent in all affected mice and matched those of Tgbov XV mice infected with brain homogenate from natural BASE. The immunohistochemical analysis of skeletal muscles from cattle with natural and experimental BASE showed the presence of abnormal prion protein deposits within muscle fibers. Conversely, Tgbov XV mice challenged with lymphoid tissue and kidney from natural and experimental BASE did not develop disease. The novel information on the neuromuscular tropism of the BASE strain, efficiently overcoming species barriers, underlines the relevance of maintaining an active surveillance.  相似文献   

4.
For the surveillance of transmissible spongiform encephalopathies (TSEs) in animals and humans, the discrimination of different TSE strains causing scrapie, BSE, or Creutzfeldt-Jakob disease constitutes a substantial challenge. We addressed this problem by Fourier transform-infrared (FT-IR) spectroscopy of pathological prion protein PrP27-30. Different isolates of hamster-adapted scrapie (263K, 22A-H, and ME7-H) and BSE (BSE-H) were passaged in Syrian hamsters. Two of these agents, 22A-H and ME7-H, caused TSEs with indistinguishable clinical symptoms, neuropathological changes, and electrophoretic mobilities and glycosylation patterns of PrP27-30. However, FT-IR spectroscopy revealed that PrP27-30 of all four isolates featured different characteristics in the secondary structure, allowing a clear distinction between the passaged TSE agents. FT-IR analysis showed that phenotypic information is mirrored in beta-sheet and other secondary structure elements of PrP27-30, also in cases where immunobiochemical typing failed to detect structural differences. If the findings of this study hold true for nonexperimental TSEs in animals and humans, FT-IR characterization of PrP27-30 may provide a versatile tool for molecular strain typing without antibodies and without restrictions to specific TSEs or mammalian species.  相似文献   

5.
6.
Seven peptides matching fragments of the prion protein and containing from 17 to 31 amino acid residues were synthesized to obtain antibodies for diagnostics of bovine spongiform encephalopathy. Rabbits were immunized with either free peptides or peptide-protein conjugates to result in sera with a high level of antipeptide antibodies. Immunohistochemical assay revealed sera against four free peptides and a protein-peptide conjugate, which effectively bind to the pathogenic isoform of the prion protein in brain tissue preparations from cattle afflicted with bovine spongiform encephalopathy and do not interact with normal brain preparations. The resulting antipeptide sera can be used in developing a diagnostic kit for bovine spongiform encephalopathy.  相似文献   

7.
Polymorphisms of the prion protein gene PRNP have been shown to influence the susceptibility/resistance to prion infections in human and sheep. In addition, the T174M polymorphism within the flanking prion doppel gene (PRND) was thought to be involved in susceptibility to sporadic Creutzfeldt-Jacob disease. To study a possible influence of DNA polymorphisms of the bovine PRND gene in bovine spongiform encephalopathy (BSE), previously identified and newly isolated DNA polymorphisms were genotyped in all available German cattle that tested positive for BSE. Genotypes and calculated haplotypes were compared with breeding bulls serving as controls. Analysis of the four major breeds Schwarzbunt (Holstein Friesian), Rotbunt (Holstein Red), Fleckvieh (Simmental), and Braunvieh (Swiss Brown) resulted in the isolation of the previously known polymorphisms R50H and R132Q and two novel synonymous single nucleotide polymorphisms (SNPs) C4820T and A5063T. Comparative genotype and haplotype analysis of BSE and control animals revealed a significantly different distribution of polymorphisms C4815T and R132Q in Fleckvieh animals but not in the other breeds tested. No association to BSE susceptibility was detectable for polymorphisms R50H and A5063T.  相似文献   

8.
Analysis of abnormal prion protein glycoform patterns from chronic wasting disease (CWD)-affected deer and elk, scrapie-affected sheep and cattle, and cattle with bovine spongiform encephalopathy failed to identify patterns capable of reliably distinguishing these transmissible spongiform encephalopathy diseases. However, PrP-res patterns sometimes differed among individual animals, suggesting infection by different or multiple CWD strains in some species.  相似文献   

9.
10.
Molecular features of the proteinase K-resistant prion protein (PrP res) may discriminate among prion strains, and a specific signature could be found during infection by the infectious agent causing bovine spongiform encephalopathy (BSE). To investigate the molecular basis of BSE adaptation and selection, we established a model of coinfection of mice by both BSE and a sheep scrapie strain (C506M3). We now show that the PrP res features in these mice, characterized by glycoform ratios and electrophoretic mobilities, may be undistinguishable from those found in mice infected with scrapie only, including when mice were inoculated by both strains at the same time and by the same intracerebral inoculation route. Western blot analysis using different antibodies against sequences near the putative N-terminal end of PrP res also demonstrated differences in the main proteinase K cleavage sites between mice showing either the BSE or scrapie PrP res profile. These results, which may be linked to higher levels of PrP res associated with infection by scrapie, were similar following a challenge by a higher dose of the BSE agent during coinfection by both strains intracerebrally. Whereas PrP res extraction methods used allowed us to distinguish type 1 and type 2 PrP res, differing, like BSE and scrapie, by their electrophoretic mobilities, in the same brain region of some patients with Creutzfeldt-Jakob disease, analysis of in vitro mixtures of BSE and scrapie brain homogenates did not allow us to distinguish BSE and scrapie PrP res. These results suggest that the BSE agent, the origin of which remains unknown so far but which may have arisen from a sheep scrapie agent, may be hidden by a scrapie strain during attempts to identify it by molecular studies and following transmission of the disease in mice.  相似文献   

11.
There is increasing concern over the extent to which bovine spongiform encephalopathy (BSE) prions have been transmitted to humans, as a result of the rising number of variant Creutzfeldt-Jakob disease (vCJD) cases. Toward preventing new transmissions, diagnostic tests for prions in livestock have been developed using the conformation-dependent immunoassay (CDI), which simultaneously measures specific antibody binding to denatured and native forms of the prion protein (PrP). We employed high-affinity recombinant antibody fragments (recFab) reacting with residues 95-105 of bovine (Bo) PrP for detection and another recFab that recognizes residues 132-156 for capture in the CDI. We report that the CDI is capable of measuring the disease-causing PrP isoform (PrP(Sc)) in bovine brainstems with a sensitivity similar to that of end-point titrations in transgenic (Tg) mice expressing BoPrP. Prion titers were approximately 10(7) ID(50) units per gram of bovine brainstem when measured in Tg(BoPrP) mice, a figure approximately 10 times greater than that determined by bioassay in cattle and approximately 10,000x greater than in wild-type mice. We also report substantial differences in BoPrP(Sc) levels in different areas of the obex region, where neuropathology has been consistently observed in cattle with BSE. The CDI was able to discriminate between PrP(Sc) from BSE-infected cattle and Tg(BoPrP) mice as well as from chronic wasting disease (CWD)-infected deer and elk. Our findings argue that applying the CDI to livestock should considerably reduce human exposure to animal prions.  相似文献   

12.
It is desirable to make the diagnosis in live cattle with bovine spongiform encephalopathy (BSE), and thus surrogate markers for the disease have been eagerly sought. Serum proteins from BSE cattle were analyzed by 2‐D Western blotting and TOF‐MS. Autoantibodies against proteins in cytoskeletal fractions prepared from normal bovine brains were found in the sera of BSE cattle. The protein recognized was identified to be glial fibrillary acidic protein (GFAP), which is expressed mainly in astrocytes in the brain. The antigen protein, GFAP, was also found in the sera of BSE cattle. The percentages of both positive sera in the autoantibody and GFAP were 44.0% for the BSE cattle, 0% for the healthy cattle, and 5.0% for the clinically suspected BSE‐negative cattle. A significant relationship between the presence of GFAP and the expression of its autoantibody in the serum was recognized in the BSE cattle. These findings suggest a leakage of GFAP into the peripheral blood during neurodegeneration associated with BSE, accompanied by the autoantibody production, and might be useful in understanding the pathogenesis and in developing a serological diagnosis of BSE in live cattle.  相似文献   

13.
Bovine spongiform encephalopathy (BSE) in cattle is a neurodegenerative disease belonging to the transmissible spongiform encephalopathies, a group of diseases including sheep scrapie and human Creutzfeldt-Jakob disease. The pathological characteristics of BSE are vacuolation, mild gliosis, little neuronal degeneration without inflammatory process and abnormal prion protein (PrPsc) accumulation. The aim of this study was to define precisely the neuropathology of BSE in French cases by assessing the distributions of vacuolar lesions and PrPsc within cattle brains. We showed that vacuolation and PrPsc accumulation varied from one structure to the other, and most often coexisted. These distributions were in accordance with British and Portuguese data previously published. Seven types of PrPsc immunolabelling were described based on morphology and localisation. Besides mild gliosis mainly associated with vacuolation, we observed a very slight neuronal apoptosis. In addition, we saw a moderate vimentin labelling colocalised with vacuolation, a discrete ubiquitin staining and no Tau protein staining. This study provides precise histopathological data that will be completed with a quantitative study on more than 100 obex samples of French BSE cases.  相似文献   

14.
The majority of bovine spongiform encephalopathy (BSE) cases have been ascribed to the classical form of the disease. H-type and L-type BSE cases have atypical molecular profiles compared to classical BSE and are thought to arise spontaneously. However, one case of H-type BSE was associated with a heritable E211K mutation in the prion protein gene. The purpose of this study was to describe transmission of this unique isolate of H-type BSE when inoculated into a calf of the same genotype by the intracranial route. Electroretinograms were used to demonstrate preclinical deficits in retinal function, and optical coherence tomography was used to demonstrate an antemortem decrease in retinal thickness. The calf rapidly progressed to clinical disease (9.4 months) and was necropsied. Widespread distribution of abnormal prion protein was demonstrated within neural tissues by western blot and immunohistochemistry. While this isolate is categorized as BSE-H due to a higher molecular mass of the unglycosylated PrP(Sc) isoform, a strong labeling of all 3 PrP(Sc) bands with monoclonal antibodies 6H4 and P4, and a second unglycosylated band at approximately 14 kDa when developed with antibodies that bind in the C-terminal region, it is unique from other described cases of BSE-H because of an additional band 23 kDa demonstrated on western blots of the cerebellum. This work demonstrates that this isolate is transmissible, has a BSE-H phenotype when transmitted to cattle with the K211 polymorphism, and has molecular features that distinguish it from other cases of BSE-H described in the literature.  相似文献   

15.
A sensitive immunohistochemical procedure, the tyramide signal amplification (TSA) system, was applied to detect the localization of immunolabeled disease-associated prion protein (PrP(Sc)) in cattle affected with bovine spongiform encephalopathy (BSE). In this procedure, immunolabeling could be visualized in the optic nerve and the adrenal medulla. In the optic nerve, the dual immunofluorescent technique showed that the granular PrP(Sc) was occasionally detected in the astrocytes, microglia, and myelin sheath adjacent to the axon. Clustered PrP(Sc) was also scattered in association with microglial cells and astrocytes of the optic nerve. In the adrenal gland, PrP(Sc) immunolabeling was confined within the sympathetic nerve fibers and endings. The results suggest that (1) PrP(Sc) might centrifugally spread within and between glial cells and/or the non-axonal (also known as ad-axonal) region of nerve fibers, rather than the axonal and/or extracellular space pathway in the optic nerve, and (2) the sympathetic innervations might be important for the trafficking of BSE agent in the adrenal glands of cattle. This study also suggests that tyramide-based immunochemical analysis should be performed to detect immunolabeled PrP(Sc) in the extracerebral tissues of BSE-affected cattle.  相似文献   

16.
Polymorphisms in the coding region of the prion protein gene (PRNP) have been associated with the susceptibility and incubation period of prion diseases in humans and sheep. However, polymorphisms in this part of the bovine PRNP gene do not affect the classical bovine spongiform encephalopathy (BSE) susceptibility in cattle. Studies carried out in Germany have shown that insertion/deletion-type polymorphisms located in the promoter region of the bovine prion gene are possible genetic factors modulating BSE susceptibility by changing the level of PRNP expression. No such association was observed for atypical BSE cases; however, due to the rare nature of the disease, these results should be confirmed. Additionally, a single nonsynonymous mutation in PRNP codon 211 (E211K) was described in one H-type BSE case in the USA; however, it was not found in any other cases. Here, we performed genetic characterization of PRNP promoter indel variations and determined the polymorphism of open reading frames (ORFs) of PRNP and bovine prion-like Shadoo (SPRN) genes in six Polish atypical BSE cases and compared these results to the population of clinically healthy Polish Holstein cattle. No potentially pathogenic mutations were found in the PRNP ORF in atypical BSE-affected cattle, but our study showed a high frequency of deletions at the indel loci of PRNP promoter in these animals. Additionally, a rare sequence variation in the SPRN protein-coding sequence was found in one L-type atypical BSE-affected animal.  相似文献   

17.
Thermostable proteases have been investigated for their ability to provide a novel biological solution to decontamination of prion agents responsible for transmissible spongiform encephalopathies (TSEs). Proteases were identified that digested total mouse brain homogenate (MBH) protein from uninfected mice. These proteases were then evaluated for digestion of BSE (301V) infectious MBH over a range of pH and temperatures, screened for loss of anti-prion antibody 6H4 immunoreactivity and protease-treated infectious MBH assessed in mouse bioassay using VM mice. Despite a number of proteases eliminating all 6H4-immunoreactive material, only the subtilisin-enzyme Properase showed a significant extension in incubation period in mouse bioassays following a 30-min incubation at 60 degrees C and pH 12. These results demonstrate the potential of the method to provide a practical solution to the problems of TSE contamination of surgical instruments and highlight the inadequacy of using Western blot for assessment of decontamination/inactivation of TSE agents.  相似文献   

18.
ABSTRACT

Since the discovery of bovine spongiform encephalopathy (BSE), researchers have orally challenged cattle with infected brain material to study various aspects of disease pathogenesis. Unlike most other pathogens, oral BSE challenge does not always result in the expected clinical presentation and pathology. In a recent study, steers were challenged orally with BSE and all developed clinical signs and were sacrificed and tested. However, despite a similar incubation and clinical presentation, one of the steers did not have detectable PrPSc in its brain. Samples from this animal were analysed for genetic differences as well as for the presence of in vitro PrPSc seeding activity or infectivity to determine the BSE status of this animal and the potential reasons that it was different. Seeding activity was detected in the brainstem of the abnormal steer but it was approximately one million times less than that found in the normal BSE positive steers. Intra-cranial challenge of bovinized transgenic mice resulted in no transmission of disease. The abnormal steer had different genetic sequences in non-coding regions of the PRNP gene but detection of similar genotypes in Canadian BSE field cases, that showed the expected brain pathology, suggested these differences may not be the primary cause of the abnormal result. Breed composition analysis showed a higher Hereford content in the abnormal steer as well as in two Canadian atypical BSE field cases and several additional abnormal experimental animals. This study could point towards a possible impact of breed composition on BSE pathogenesis.  相似文献   

19.
Zhu XY  Feng FY  Xue SY  Hou T  Liu HR 《Génome》2011,54(10):805-811
Two insertion/deletion (indel) polymorphisms of the prion protein gene (PRNP), a 23-bp indel in the putative promoter region and a 12-bp indel within intron I, are associated with the susceptibility to bovine spongiform encephalopathy (BSE) in cattle. In the present study, the polymorphism frequencies of the two indels in four main beef cattle breeds (Hereford, Simmental, Black Angus, and Mongolian) from North China were studied. The results showed that the frequencies of deletion genotypes and alleles of 23- and 12-bp indels were lower, whereas the frequencies of insertion genotypes and alleles of the two indels were higher in Mongolian cattle than in the other three cattle breeds. In Mongolian cattle, the 23-bp insertion / 12-bp insertion was the major haplotype, whereas in Hereford, Simmental, and Black Angus cattle, the 23-bp deletion / 12-bp deletion was the major haplotype. These results demonstrated that Mongolian cattle could be more resistant to BSE, compared with the other three cattle breeds, because of its relatively low frequencies of deletion genotypes and alleles of 23- and 12-bp indel polymorphisms. Thus, this race could be important for selective breeding to improve resistance against BSE in this area.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号