首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders.  相似文献   

2.
Intracellular calcium influx through NMDA receptors triggers a cascade of deleterious signaling events which lead to neuronal death in neurological conditions such as stroke. However, it is not clear as to the molecular mechanism underlying early damage response from axons and dendrites which are important in maintaining a network essential for the survival of neurons. Here, we examined changes of axons treated with glutamate and showed the appearance of βIII-tubulin positive varicosities on axons before the appearance of neuronal death. Dizocilpine blocked the occurrence of varicosities on axons suggesting that these microstructures were mediated by NMDA receptor activities. Despite early increased expression of pCaMKII and pMAPK after just 10 min of glutamate treatment, only inhibitors to Ca2+/calmodulin-dependent protein kinase II (CaMKII) and calpain prevented the occurrence of axonal varicosities. In contrast, inhibitors to Rho kinase, mitogen-activated protein kinase and phosphoinositide 3-kinase were not effective, nor were they able to rescue neurons from death, suggesting CaMKII and calpain are important in axon survival. Activated CaMKII directly phosphorylates collapsin response mediator protein (CRMP) 2 which is independent of calpain-mediated cleavage of CRMP2. Over-expression of CRMP2, but not the phosphorylation-resistant mutant CRMP2-T555A, increased axonal resistance to glutamate toxicity with reduced numbers of varicosities. The levels of both pCRMP2 and pCaMKII were also increased robustly within early time points in ischemic brains and which correlated with the appearance of axonal varicosities in the ischemic neurons. Collectively, these studies demonstrated an important role for CaMKII in modulating the integrity of axons through CRMP2 during excitotoxicity-induced neuronal death.  相似文献   

3.
Dihydropyrimidinase-like protein 3 (DPYSL3), a member of TUC (TOAD-64/Ulip/CRMP), is believed to play a role in neuronal differentiation, axonal outgrowth and, possibly, neuronal regeneration. In primary cortical cultures, glutamate (NMDA) excitotoxicity and oxidative stress (H2O2) caused the cleavage of DPYSL3, resulting in the appearance of a doublet of 62 kDa and 60 kDa. Pre-treatment of cell cultures with calpain inhibitors, but not caspase 3 inhibitor, before exposure to NMDA or H2O2 completely blocked the appearance of the doublet, suggesting calpain-mediated truncation. Furthermore, in vitro digestion of DPYSL3 in cell lysate with purified calpain revealed a cleavage product identical to that observed in NMDA- and H2O2-treated cells, and its appearance was blocked by calpain inhibitors. Analysis of the DPYSL3 protein sequence revealed a possible cleavage site for calpain (Val-Arg-Ser) on the C-terminus of DPYSL3. Collectively, these studies demonstrate for the first time that DPYSL3 is a calpain substrate. The physiological relevance of the truncated DPYSL3 protein remains to be determined.  相似文献   

4.
We have analyzed the appearance of neurons and glial cells in chick dorsal root ganglia during development. Neurons were identified by the presence of polysialogangliosides recognized by tetanus toxin (GD1b, GT1) or by the monoclonal antibody Q211 directed against polysialogangliosides containing four, five and six sialic acid residues. Glial cells were identified by the presence of 04 antigen. A population of undifferentiated cells, i.e., cells which express neither neuronal nor glial cell surface antigens, present in dorsal root ganglia until embryonic day 7, was separated from the neuronal and glial population. This cell population contains neuronal progenitor cells which differentiate to neurons within 1 day in culture. This differentiation process is characterized by the appearance of neuronal morphology, of neuron-specific gangliosides and by the appearance of voltage-dependent sodium and calcium channels.  相似文献   

5.
Studies on the molecular mechanisms underlying neuronal differentiation are frequently performed using cell lines established from neuroblastomas. In this study we have used mouse N1E-115 neuroblastoma cells that undergo neuronal differentiation in response to DMSO. During differentiation, cyclin-dependent kinase (cdk) activities decline and phosphorylation of the retinoblastoma gene product (pRb) is lost, leading to the appearance of a pRb-containing E2F DNA-binding complex. The loss of cdk2 activity is due to a decrease in cdk2 abundance whereas loss of cdk4 activity is caused by strong association with the cdk inhibitor (CKI) p27KIP1 and concurrent loss of cdk4 phosphorylation. Moreover, neuronal differentiation can be induced by overexpression of p27KIP1 or pRb, suggesting that inhibition of cdk activity leading to loss of pRb phosphorylation, is the major determinant for neuronal differentiation.  相似文献   

6.
In a basic approach to investigations of neuronal–glial interactions during both normal brain development and its pathogenesis, embryonic brain cell populations were fractionated into purified neuronal and glial components. Using separation procedures based on differential adhesion and cytotoxicity, the isolated neuronal and glial phenotypes could be identified by distinct morphological and biochemical characteristics, including the visualization of glial fibrillary acid protein (GFA) within glial cells in immunohistochemical assays with monospecific anti-GFA serum. When unfractionated cerebrum cells dissociated from 10-day chick or 14-day mouse embryos were plated as monolayers and cultured for 1-14 days, monospecific antiserum against fibronectin (LETS glycoprotein) was found to react with many, but not all, of the cells as revealed by indirect immunofluorescence microscopy. The isolated neuronal and glial components of these populations were used to determine whether the appearance of membrane-associated fibronectin was characteristic of one cell type or the other, or both, and if neuronal–glial cell interaction was required for its expression. It was found that the surfaces of glial cells, completely isolated from neurons, showed an intense fluorescent reaction to the anti-fibronectin serum. In contrast, the purified neuronal cultures showed no fluorescence with either the anti-GFA or anti-fibronectin sera. These results demonstrate fibronectin as a cell surface protein associated primarily with glial cells and independent of neuronal–glial cell interaction for its expression. Furthermore, the results indicate that the fibronectin observed on glial cell surfaces in these cultures is produced endogenously and is not due to the preferential binding of fibronectin present in the culture medium. The role of fibronectin as an adhesive molecule in neuronal–glial interactions is discussed.  相似文献   

7.
AMP-activated protein kinase (AMPK) stimulates energy production via glucose and lipid metabolism, whereas it inhibits energy consuming functions, such as protein and cholesterol synthesis. Increased cytoplasmic AMP and Ca(2+) levels are the major activators of neuronal AMPK signaling. Interestingly, Alzheimer's disease (AD) is associated with several abnormalities in neuronal energy metabolism, for example, decline in glucose uptake, mitochondrial dysfunctions and defects in cholesterol metabolism, and in addition, with problems in maintaining Ca(2+) homeostasis. Epidemiological studies have also revealed that many metabolic and cardiovascular diseases are risk factors for cognitive impairment and sporadic AD. Emerging studies indicate that AMPK signaling can regulate tau protein phosphorylation and amyloidogenesis, the major hallmarks of AD. AMPK is also a potent activator of autophagic degradation which seems to be suppressed in AD. All these observations imply that AMPK is involved in the pathogenesis of AD. However, the responses of AMPK activation are dependent on stimulation and the extent of activating stress. Evidently, AMPK signaling can repress and delay the appearance of AD pathology but later on, with increasing neuronal stress, it can trigger detrimental effects that augment AD pathogenesis. We will outline the potential role of AMPK function in respect to various aspects affecting AD pathogenesis.  相似文献   

8.
The differentiation pattern of two related human neuroblastoma cell lines, SK-N-SHF and SK-N-SHN, induced by retinoic acid and staurosporine was studied. Immunohistochemical and electron microscopic examination of the cells indicated that the SHF variant could undergo differentiation along a melanocytic route when treated with retinoic acid and to neuronal cells when treated with retionic acid and staurosporine together. Treatment of SHN cells with either or both these agents caused neuronal differentiation. The melanocytic pathway was characterized in part by the flattening of the cells, the appearance of melanocytic antigens and various forms of melanosomes, an increase in tyrosinase activity, and the absence of neuronal marker proteins. The neuronal route was typified by the development of long neuritic processes containing microtubules and numerous neurosecretory granules as well as by immunohistochemical reactions for neural cell adhesion molecule, synaptophysin, and neurofilament proteins. The significance of these results is discussed in terms of the differentiation responses of neuroblastoma cells to chemical agents as well as some of the factors involved in the regulation of phenotype expressions of these cells.  相似文献   

9.
At present there is widely spread concept of populational coding of information by brain neurons; it is based first of all on results of comparison of neuronal activity with parameters of the used stimulus. Relation between the neuronal activity coding and the observed behavioral actions has been practically not studied. In the present work, neuronal impulse activity has been studied in groups of 6 neurons recorded in parallel. Distribution of frequencies of the presence of cases of excitation of one or several cells has been established to differ statistically significantly from the theoretical distribution of the same values; this indicates that under real conditions, the appearance of individual combinations of active neurons is not random, but is connected to a certain degree with conditions of experiment. The selective combinations of neuronal activity have been revealed to be different at stages of program. This indicates that organization of different behavioral actions is associated with activities of certain combinations of neurons.  相似文献   

10.
At present there is widely spread concept of populational coding of information by brain neurons; it is based first of all on results of comparison of neuronal activity with parameters of the used stimulus. Relation between the neuronal activity coding and the observed behavioral actions has been practically not studied. In the present work, neuronal impulse activity has been studied in groups of 6 neurons recorded in parallel. Distribution of frequencies of the presence of cases of excitation of one or several cells has been established to differ statistically significantly form the theoretical distribution of the same values; this indicates that under real conditions, the appearance of individual combinations of active neurons is not random, but is connected to a certain degree with conditions of experiment. The selective combinations of neuronal activity have revealed to be different at stages of program. This indicates that organization of different behavioral actions is associated with activities of certain combinations of neurons.  相似文献   

11.
In order to gain insight into the potential role of the enteric microenvironment in the neuronal determination of the neural crest-derived precursor cells of enteric neurons, an attempt was made to ascertain when and where along the migratory route of these cells that they first express neuronal properties. The immunocytochemical detection of the 160-kDa component of the triplet of the chick neurofilament peptides served as a neuronal marker. In addition, neurogenic potential was assessed by growing explants of tissue suspected of containing presumptive neuroblasts in culture or as grafts on the chorioallantoic membrane of chick embryonic hosts. Neurofilament immunoreactivity was first detected in the foregut by Day 4 of development and spread to the hindgut by Day 7. Within the hindgut, development was more advanced within the colorectum than within the more proximal terminal ileum and caecal appendages. This probably reflects the distal-proximal migration of sacral neural crest cells in the postumbilical bowel. The ability of enteric explants to show neuronal development in vitro correlated with whether or not cells containing neurofilament immunoreactivity had reached that segment of gut at the age of explantation. These data suggest that enteric neuronal precursors have already begun to differentiate as neurons by the time they colonize the gut. Prior to the appearance of fibrillar neurofilament immunoreactivity in the foregut, cells that express this marker were found transiently within the mesenchyme of branchial arches 3, 4, and 5. These cells had disappeared from this region by developmental Day 6. The neurogenic potential of branchial arches 3 and 4 was demonstrated by the correlation that was found between the ability of explants of these arches to show neuronal development in vitro and the presence within them of cells that display neurofilament immunoreactivity. No similar neurogenic potential was found in the more rostral branchial arches which lacked the masses of neurofilament-immunoreactive cells. The location of the caudal branchial arches below the migrating vagal neural crest, the transience of the neurofilament immunoreactivity in them, and the coincident transience of their neurogenic potential in vitro, suggested that the masses of neurofilament immunoreactive cells in the caudal branchial arches might be vagal neural crest-derived neuronal precursor cells en route to the pharynx and the rest of the gut. This possibility was supported by the observation of neurofilament immunoreactivity in a subset of cells of the premigratory and early migratory neural crest in the vagal, but not other, regions of the neuraxis prior to the appearance of neurofilament immunoreactivity in the branchial arches. Proliferative expansion of cells with neurofilament immunoreactivity was indicated by the observation of mitotic figures in them. It is suggested that the vagal neural crest cells that populate the ENS are already committed to the neuronal lineage while still in the vagal region of the neuraxis. It is therefore not likely that the enteric microenvironment plays a role in this process.  相似文献   

12.
This study represents a global survey of the times of the first appearance of the neuron-glia cell adhesion molecule (Ng-CAM) in various regions and on particular cells of the chick embryonic nervous system. Ng-CAM, originally characterized by means of an in vitro binding assay between glial cells and brain membrane vesicles, first appears in development at the surface of early postmitotic neurons. By 3 d in the chick embryo, the first neurons detected by antibodies to Ng-CAM are located in the ventral neural tube; these precursors of motor neurons emit well-stained fibers to the periphery. To identify locations of appearance of Ng-CAM in the peripheral nervous system (PNS), we used a monoclonal antibody called NC-1 that is specific for neural crest cells in early embryos to show the presence of numerous crest cells in the neuritic outgrowth from the neural tube; neither these crest cells nor those in ganglion rudiments bound anti-Ng-CAM antibodies. The earliest neurons in the PNS stained by anti-Ng-CAM appeared by 4 d of development in the cranial ganglia. At later stages and progressively, all the neurons and neurities of the PNS were found to contain Ng-CAM both in vitro and in vivo. Many central nervous system (CNS) neurons also showed Ng-CAM at these later stages, but in the CNS, the molecule was mostly associated with neuronal processes (mainly axons) rather than with cell bodies; this regional distribution at the neuronal cell surface is an example of polarity modulation. In contrast to the neural cell adhesion molecule and the liver cell adhesion molecule, both of which are found very early in derivatives of more than one germ layer, Ng-CAM is expressed only on neurons of the CNS and the PNS during the later epoch of development concerned with neural histogenesis. Ng-CAM is thus a specific differentiation product of neuroectoderm. Ng-CAM was found on developing neurons at approximately the same time that neurofilaments first appear, times at which glial cells are still undergoing differentiation from neuroepithelial precursors. The present findings and those of previous studies suggest that together the neural cell adhesion molecule and Ng-CAM mediate specific cellular interactions during the formation of neuronal networks by means of modulation events that govern their prevalence and polarity on neuronal cell surfaces.  相似文献   

13.
An intrahippocampal injection of N-methyl-D-aspartate induced the appearance of degradation products of both the 68 kiloDalton neurofilament protein and the glial fibrillary acidic protein, as revealed by immunoblot techniques. The degradation of these two filament proteins was maximal at 10 days after the lession. The degradation patterns were similar to those induced with calpains or calcium in vitro. There were no degradation effects on the 200 kD neurofilament protein as tested with both mono- and polyclonal antibodies. Consequently, the neuronal degeneration after excessive activation of NMDA receptors appears to involve calcium activation of proteolytic enzymes. The effects on the glial proteins are probably secondary to neuronal damage but could be related to calcium dependent processes.  相似文献   

14.
Cells considered to be migratory in the cerebral cortex of adult lizards are ultrastructurally of two types. Nuclei in the first type have highly dispersed chromatin, creating a spongy appearance, whereas in the second type the chromatin is irregularly clumped. Both types of cells are closely associated with processes of radial ependymal glia cells, which perhaps orient their migratory pathways. Cells with spongy chromatin show an increase in cytoplasmic organelles and progressive chromatin condensation as they travel from the ependymal layer to the granular layer. Possibly these cells account for the neuronal increase that takes place in the granular layer during postnatal life. Cells with chromatin clumps are very scarce; ultrastructurally they resemble immature reptilian astroglia cells.  相似文献   

15.
Current hypotheses concerning the mechanism of neuronal cell death in Parkinson's disease (PD) and related synucleopathies propose a functional interaction between parkin and alpha-synuclein (alphaS). Recently parkin was shown to suppress mutant alphaS-induced toxicity in primary neurons, providing a basis for an association between these proteins and neuronal loss [Neuron 36 (2000) 1007-1019]. We have asked if a similar association could be made between wild-type (wt) alphaS and parkin. We examined inducible over-expression of alphaS in SHSY-5Y cells through adenoviral infection under conditions which produce cellular toxicity through a reduction in ATP levels. We demonstrate that parkin suppresses toxicity induced by mutant (A53T) and wt alphaS. Parkin over-expression was also associated with the appearance of higher molecular weight alphaS-immunoreactive bands by Western blot analysis. These data, consistent with a protective role for parkin, extend previous findings to include a functional association between parkin and the wt form of alphaS.  相似文献   

16.
The development of enteric and sympathetic neurons from neural crest precursor cells is regulated by signals produced by the embryonic environments to which the cells migrate. Bone morphogenetic proteins (BMPs) are present in the developing embryo and act to induce neuronal differentiation and noradrenergic properties of neural crest cells. We have investigated the role of BMP2 in regulating the appearance of distinct populations of autonomic neurons from postmigratory, HNK-1-positive neural crest precursor cells. BMP2 promotes neuronal differentiation of sympathetic and enteric precursor cells isolated from E14.5 rat. The effects of BMP2 change over time, resulting in a decrease in neuron number that can be attributed to apoptotic cell death. BMP2-dependent neuron death is rescued by gut-derived factors that provide trophic support to maturing neurons, indicating that BMP2 regulates the acquisition of trophic dependence of developing peripheral neurons. In addition to regulating neuron number, BMP2 promotes both panneuronal maturation and the acquisition of an enteric phenotype, as measured by lineage-specific changes in the expression of tyrosine hydroxylase and MASH-1. While BMP2 is sufficient to induce neuronal differentiation and panneuronal development, these results suggest that additional factors in the environment must collaborate with BMP2 to promote the final noradrenergic phenotype of sympathetic neurons.  相似文献   

17.
Rat brain sensorimotor cortical neurons were investigated in thermal trauma, using electron microscopic radioautography. RNA synthesis and destructive neuronal changes (chromatolysis, nuclear and mitochondrial damage) have been determined. It has been established that the development of a reparative process--ribosomal RNA synthesis--was roughly parallel to the appearance of destructive changes and was marked in neurons with considerable ultrastructural disturbances.  相似文献   

18.
DiCarlo JJ  Zoccolan D  Rust NC 《Neuron》2012,73(3):415-434
Mounting evidence suggests that 'core object recognition,' the ability to rapidly recognize objects despite substantial appearance variation, is solved in the brain via a cascade of reflexive, largely feedforward computations that culminate in a powerful neuronal representation in the inferior temporal cortex. However, the algorithm that produces this solution remains poorly understood. Here we review evidence ranging from?individual neurons and neuronal populations to behavior and computational models. We propose that understanding this algorithm will require using neuronal and psychophysical data to sift through many computational models, each based on building blocks of small, canonical subnetworks with a common functional goal.  相似文献   

19.
Abstract

The details of the sequence of pathological events leading to neuron death in Alzheimer’s disease (AD) are not known. Even the formation of amyloid plaques, one of the major histopathological hallmarks of AD, is not clearly understood; both the origin of the amyloid and the means of its deposition remain unclear. It is still widely considered, however, that amyloid plaques undergo gradual growth in the interstitial space of the brain via continual extracellular deposition of amyloid beta peptides at “seeding sites,” and that these growing plaques encroach progressively on neurons and their axons and dendritic processes, eventually leading to neuronal death. Actually, histopathological evidence to support this mechanism is sparse and of uncertain validity. The fact that the amyloid deposits in AD brains that are collectively referred to as plaques are of multiple types and that each seems to have a different origin often is overlooked. We have shown experimentally that many of the so-called “diffuse amyloid plaques,” which lack associated inflammatory cells, are either the result of leaks of amyloid from blood vessels at focal sites of blood-brain barrier breaches or are artifacts resulting from grazing sections through the margins of dense core plaques. In addition, we have provided experimental evidence that neuronal death via necrosis leaves a residue that takes the form of a spheroid “cloud” of amyloid, released by cell lysis, surrounding a dense core that often contains neuronal nuclear material. Support for a neuronal origin for these “dense core amyloid plaques” includes their ability to attract inflammatory cells (microglia and immigrant macrophages) and that they contain nuclear and cytoplasmic components that are somewhat resistant to proteolysis by lysosomes released during neuronal cell lysis. We discuss here the clinical and therapeutic importance of recognizing that amyloid deposition occurs both within neurons (intracellular) and in the interstitial (extracellular) space of the brain. For dense core plaques, we propose that the latter location largely follows from the former. This scenario suggests that blocking intraneuronal amyloid deposition should be a primary therapeutic target. This strategy also would be effective for blocking the gradual compromise of neuronal function resulting from this intraneuronal deposition, and the eventual death and lysis of these amyloid-burdened neurons that leads to amyloid release and the appearance of dense core amyloid plaques in the interstitium of AD brains.  相似文献   

20.
The maturation of the corticotropin-releasing factor (CRF) neuronal system was evaluated by immunocytochemistry and morphometry in Bufo arenarum, during spontaneous metamorphosis and in tadpoles with inhibited thryroid function. The first appearance of CRF immunoreactive fibers was at the end of premetamorphosis (stage VIII). These fibers were found in small numbers and weakly stained in the median eminence and infundibular stalk. With the advance of larval development, CRF-like material stained intensely and tended to aggregate in the external zone of the median eminence. At climax stages, immunoreactive fibers and perikarya (weakly stained) were identified in the interpeduncular nucleus and in the dorsal infundibular nucleus. Morphometric and immunocytochemical results indicate that the maturation of the CRF neuronal system in Bufo arenarum occurs just before metamorphic climax, coinciding with high levels of thyroid and steroid hormones. We have also found that in larvae with inhibited thyroid function, the CRF neuronal system is able to develop, and that thyroid hormone could exert a negative feedback control on the synthesis of CRF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号