首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept of cell adhesiveness was analyzed by looking for correlations between the adhesive behavior and measurable biological properties of different cell populations. Ten established lines of melanoma cells were assayed for passive deformability (by micropipet aspiration), active spreading (by measuring the height/diameter ratio after incubation on different surfaces), density and mobility of concanavalin A binding sites (by quantitative analysis of fluorescence microscopic images), spontaneous and concanavalin A-mediated agglutination (by measuring the number of cell conjugates resisting calibrated shearing forces), and binding to glass capillary tubes (with a quantitative assay of binding strength). Forty-four different parameters were thus measured, and each set of determinations was repeated 2 or 3 t at different days on each cell line. Analysis of variance was performed to assess the capacity of each parameter to discriminate between different lines. Correlations between different parameters were studied in order to understand a possible influence of cell intrinsic properties on the behavior of individual cells. The following conclusions were suggested by experimental data
1.  Cell spreading ability, resistance to slow deformation within a micropipette and ability to form shear-resistant bonds, are independent properties. It is therefore suggested that different mechanisms rule the cell deformations on time scales of several minutes, tens of seconds, and fractions of a second.
2.  Cell spreading ability may effectively influence binding strength only when adhesive stimuli are low, since in this case, cell stiffness is likely to impair the formation of extensive contact areas.
3.  Individual cells may display marked heterogeneity within a given population, that emphasizes the danger of using averaged parameters to predict rare events (such as metastasis formation).
4.  The most useful parameters to discriminate between different cell lines were, spreading ability and shear-resistant lectin agglutination, and substrate adhesion.
It is concluded that cell adhesion is influenced by several measurable cellular properties that may display independent variations. The importance of a given parameter depends on the conditions of bond formation and rupture.  相似文献   

2.
Cell adhesion to extracellular matrix components involves integrin binding, receptor clustering, and recruitment of cytoskeletal elements, leading to the formation of discrete adhesive structures (focal adhesions). A force balance, macroscopic-to-microscopic model of these adhesive events is presented in the context of experimentally measured parameters. Integrin bond force, bond numbers, and distribution along the contact area strongly modulated the resulting adhesive force. Furthermore, focal adhesion assembly enhanced adhesion strength by 30% over integrin clustering alone. Predicted values are in excellent agreement with experimental results. This model provides a simple framework to systematically analyze the contributions of different adhesive parameters to overall adhesion strength.  相似文献   

3.
Cell adhesion to extracellular matrix components involves integrin receptor-ligand binding and adhesion strengthening, comprising receptor clustering, cytoskeletal interactions, and cell spreading. Although elucidation of the biochemical events in adhesive interactions is rapidly advancing, the mechanical processes and mechanisms of adhesion strengthening remain poorly understood. Because the biochemical and biophysical processes in adhesive interactions are tightly coupled, mechanical analyses of adhesion strength provide critical information on structure-function relationships. This review focuses on (a) measurement systems for cell adhesion strength and (b) quantitative analyses of integrin-mediated strengthening to extracellular matrix components.  相似文献   

4.
Cell adhesion and motility depend strongly on the interactions between cells and extracellular matrix (ECM) substrates. When plated onto artificial adhesive surfaces, cells first flatten and deform extensively as they spread. At the molecular level, the interaction of membrane-based integrins with the ECM has been shown to initiate a complex cascade of signaling events [1], which subsequently triggers cellular morphological changes and results in the generation of contractile forces [2]. Here, we focus on the early stages of cell spreading and probe their dynamics by quantitative visualization and biochemical manipulation with a variety of cell types and adhesive surfaces, adhesion receptors, and cytoskeleton-altering drugs. We find that the dynamics of adhesion follows a universal power-law behavior. This is in sharp contrast with the common belief that spreading is regulated by either the diffusion of adhesion receptors toward the growing adhesive patch [3-5] or by actin polymerization [6-8]. To explain this, we propose a simple quantitative and predictive theory that models cells as viscous adhesive cortical shells enclosing a less viscous interior. Thus, although cell spreading is driven by well-identified biomolecular interactions, it is dynamically limited by its mesoscopic structure and material properties.  相似文献   

5.
Focal adhesion kinase (FAK) is a critical protein for the regulation of integrin-mediated cellular functions and it can enhance cell motility in Madin-Darby canine kidney (MDCK) cells by hepatocyte growth factor (HGF) induction. We utilized optical trapping and cytodetachment techniques to measure the adhesion force between pico-Newton and nano-Newton (nN) for quantitatively investigating the effects of FAK on adhesion force during initial binding (5 s), beginning of spreading (30 min), spreadout (12 h), and migration (induced by HGF) in MDCK cells with overexpressed FAK (FAK-WT), FAK-related non-kinase (FRNK), as well as normal control cells. Optical tweezers was used to measure the initial binding force between a trapped cell and glass coverslide or between a trapped bead and a seeded cell. In cytodetachment, the commercial atomic force microscope probe with an appropriate spring constant was used as a cyto-detacher to evaluate the change of adhesion force between different FAK expression levels of cells in spreading, spreadout, and migrating status. The results demonstrated that FAK-WT significantly increased the adhesion forces as compared to FRNK cells throughout all the different stages of cell adhesion. For cells in HGF-induced migration, the adhesion force decreased to almost the same level (approximately 600 nN) regardless of FAK levels indicating that FAK facilitates cells to undergo migration by reducing the adhesion force. Our results suggest FAK plays a role of enhancing cell adhesive ability in the binding and spreading, but an appropriate level of adhesion force is required for HGF-induced cell migration.  相似文献   

6.
Galectin-8 functions as a matricellular modulator of cell adhesion   总被引:10,自引:0,他引:10  
The interaction of cells with the extracellular matrix regulates cell adhesion and motility. Here we demonstrate that different cell types adhere and spread when cultured in serum-free medium on immobilized galectin-8, a mammalian beta-galactoside-binding protein. At maximal doses, galectin-8 is equipotent to fibronectin in promoting cell adhesion and spreading. Cell adhesion to immobilized galectin-8 is mediated by sugar-protein interactions with integrins, and galectin-8 triggers integrin-mediated signaling cascades including Tyr phosphorylation of focal adhesion kinase and paxillin. Cell adhesion is potentiated in the presence of Mn(2+), whereas it is interrupted in the presence of soluble galectin-8, integrin beta(1) inhibitory antibodies, EDTA, or thiodigalactoside but not by RGD peptides. Furthermore, cells readily adhere onto immobilized monoclonal galectin-8 antibodies, which are equipotent to integrin antibodies in promoting cell adhesion. Cell adhesion to immobilized galectin-8 is partially inhibited by serum proteins, suggesting that complex formation between immobilized galectin-8 and serum components generates a matrix that is less supportive of cell adhesion. Accordingly, cell motility on immobilized galectin-8 readily takes place in the presence of serum. Truncation of the C-terminal half of galectin-8, including one of its two carbohydrate recognition domains, largely abolishes its ability to modulate cell adhesion, indicating that both carbohydrate recognition domains are required to maintain a functional form of galectin-8. Collectively, our findings implicate galectin-8 as a physiological modulator of cell adhesion. When immobilized, it functions as a matrix protein equipotent to fibronectin in promoting cell adhesion by ligation and clustering of cell surface integrin receptors. In contrast, when present in excess as a soluble ligand, galectin-8 (like fibronectin) forms a complex with integrins that negatively regulates cell adhesion. Because of its dual effects on the adhesive properties of the cells and its association with fibronectin, galectin-8 might be considered a novel type of matricellular protein.  相似文献   

7.
Sulfated glycolipids and cell adhesion   总被引:6,自引:0,他引:6  
The adhesive glycoproteins laminin, thrombospondin, and von Willebrand factor bind specifically and with high affinity to sulfatides, and it is this binding that probably accounts for their ability to agglutinate glutaraldehyde-fixed erythrocytes. The three proteins differ, however, in the inhibition of their binding to sulfatides by sulfated polysaccharides. Fucoidan strongly inhibits binding of both laminin and thrombospondin, but not of von Willebrand factor, suggesting the involvement of laminin or thrombospondin, or other unknown sulfatide-binding proteins in specific cell interactions that are also inhibited by fucoidan. Thrombospondin adsorbed on plastic promotes the attachment and spreading of some melanoma cells. Interestingly, fucoidan and an antibody against the sulfatide-binding domain of thrombospondin selectively inhibit spreading but not attachment to thrombospondin-coated surfaces. Sulfatides, but not neutral glycolipids or gangliosides, when adsorbed on plastic also promote attachment and spreading of some cultured cell lines. Direct adhesion of melanoma cells requires high densities of adsorbed sulfatide. In the presence of laminin, however, specific adhesion of some cell types to sulfatide is strongly stimulated and requires only low densities of adsorbed lipid, suggesting that laminin is mediating adhesion by crosslinking receptors on the cell surface to sulfatide adsorbed on the plastic. Although thrombospondin also binds to sulfatides and to melanoma cells, it does not enhance but rather inhibits direct and laminin-dependent melanoma cell adhesion to sulfatide, presumably because it is unable to bind simultaneously to ligands on opposing surfaces. Thus, sulfated glycolipids can participate in both laminin- and thrombospondin-mediated cell adhesion, but their mechanisms of interaction are different.  相似文献   

8.
Kinetics and mechanics of cell adhesion   总被引:10,自引:0,他引:10  
Cell adhesion is mediated by specific interaction between receptors and ligands. Such interaction provides not only physical linkage but also communication between the cell and its environment. The kinetics and mechanics of cell adhesion are coupled, because force can influence the formation and dissociation of receptor-ligand bonds. The kinetic rates and their force dependence determine how likely, how rapidly and how strongly cells bind as well as how long they remain bound. Since adhesion molecules are linked to apposing cellular membranes, their interaction is governed by two-dimensional (2D) kinetics. This is in contrast to the three-dimensional (3D) binding of soluble ligands to cell surface receptors. Unlike the 3D case in which many methods are available for measuring kinetic rates, not until recently have the 2D kinetic rates become experimentally measurable. In this review, I will discuss the recent progress in the experimental methods that enable quantification of the relevant kinetic and mechanical parameters, the fundamental concepts that underlie the physics of the biological phenomena, and the mathematical models that relate functions to the intrinsic properties of the adhesion molecules.  相似文献   

9.
Thrombospondin (TSP) contains the Arg-Gly-Asp (RGD) sequence that is thought to be important for cell adhesion mediated by several cell-surface integrin receptors. The RGD sequence is located in the type 3 repeat region of TSP that has multiple Ca2+ binding sites and is subject to a complex intramolecular thiol-disulfide isomerization. TSP that we isolated from thrombin-activated human platelets using buffers containing 0.1 mM Ca2+, in which Cys974 is the major labeled cysteine, did not have RGD-inhibitable adhesive activity. However, one of our preparations of TSP and TSP purified following alternative procedures using greater than or equal to 0.3 mM Ca2+ did have RGD-inhibitable adhesive activity. Reduction of TSP with DTT, either before or after adsorption to surfaces, enhanced its adhesive activity. Reduced TSP supported robust cell spreading when coated at concentrations as low as 1 micrograms/ml, whereas "adhesive" TSP not treated with DTT was active at coating concentration of greater than 20 micrograms/ml and supported only modest cell spreading. Lower DTT concentrations were required for enhancement of the adhesive activity of TSP if Ca2+ was chelated with EDTA. Cellular adhesion to DTT-treated TSP was inhibited by RGD-containing peptide and by mAb to a functional site of the alpha v beta 3 integrin. Cell blots of reduced proteolytic fragments of TSP localized the adhesive activity to the RGD-containing type 3 repeat region. These results suggest a novel mechanism for regulation of integrin-ligand interactions in which the ligand can isomerize between inactive and active forms.  相似文献   

10.
Cell migration influences cell-cell interactions to drive cell differentiation and organogenesis. To support proper development, cell migration must be regulated both temporally and spatially. Mesoderm cell migration in the Drosophila embryo serves as an excellent model system to study how cell migration is controlled and influences organogenesis. First, mesoderm spreading transforms the embryo into a multilayered form during gastrulation and, subsequently, cells originating from the caudal visceral mesoderm (CVM) migrate along the entire length of the gut. Here we review our studies, which have focused on the role of fibroblast growth factor (FGF) signaling, and compare and contrast these two different cell migration processes: mesoderm spreading and CVM migration. In both cases, FGF acts as a chemoattractant to guide cells’ directional movement but is likely not the only signal that serves this role. Furthermore, FGF likely modulates cell adhesion properties since FGF mutant phenotypes share similarities with those of cell adhesion molecules. Our working hypothesis is that levels of FGF signaling differentially influence cells’ response to result in either directional movement or changes in adhesive properties.  相似文献   

11.
Binding of ligands that contain Arg-Gly-Asp to adhesion receptors induces cell spreading and aggregation and alters gene expression, possibly due to conformational changes within occupied adhesion receptors. PMI-1 is a monoclonal antibody which reacts with the platelet fibrinogen receptor, glycoprotein IIb-IIIa, and reports such a conformational change. ADP stimulation of platelets results in a fibrinogen-dependent increase in binding of the PMI-1 antibody. Peptides containing Arg-Gly-Asp also reversibly increase the binding of this antibody to cells and to purified glycoprotein IIb-IIIa. The PMI-1 antibody inhibits platelet adhesion and spreading on certain substrata (Shadle, P. J., Ginsberg, M. H., Plow, E. F., and Barondes, S. H. (1984) J. Cell Biol. 99, 2056-2060); thus this occupancy-modulated site may participate in adhesive function.  相似文献   

12.
A tetrapeptide Arg-Gly-Asp-Ser (RGDS) has been shown to be a versatile cell recognition signal of extracellular matrix components for the interaction with cells. We introduced the RGDS tetrapeptide into a truncated form of protein A, a staphylococcal immunoglobulin-binding protein, by inserting an oligonucleotide cassette encoding the tetrapeptide into the coding region of the protein A expression vector pRIT2T. The mutagenized protein was capable of not only binding to immunoglobulin G but also mediating cell attachment and spreading onto an inert substrate. Cell adhesion mediated by the mutagenized protein was inhibitable by a synthetic peptide Gly-Arg-Gly-Asp-Ser but not by a related peptide Gly-Arg-Gly-Glu-Ser, confirming that the inserted RGDS tetrapeptide served as a recognition signal for cell adhesion. Furthermore, the RGDS-containing protein was capable of adhering cells onto an immunoglobulin-coated surface which could not by itself support cell adhesion. Thus, the cell adhesive and immunoglobulin binding activities of the mutagenized protein appear to function coordinately. The protocol described here is essentially applicable to any protein and, therefore, provides a general principle in tailoring novel multifunctional proteins having cell adhesive activity.  相似文献   

13.
We studied the effects of different lectins on the adhesive properties of baby hamster kidney (BHK) cells. The purpose of these studies was to learn more about the cell surface receptors involved in cell adhesion. Three adhesive phenomena were analyzed: 1) the adhesion of BHK cells to lectin-coated substrata; 2) the effects of lectins on the adhesion of cells to substrata coated by plasma fibronectin (pFN); and 3) the effects of lectins on the binding of pFN-coated beads to cells. Initial experiments with fluorescein-conjugated lectins indicated that concanavalin A (Con A), ricinus communis agglutinin I (RCA I), and wheat germ agglutinin (WGA) bound to BHK cells but peanut agglutinin (PNA), soybean agglutinin (SBA), and ulex europaeus agglutinin I (UEA I) dod not bind. All three of the lectins which bound to the cells promoted cell spreading on lectin substrata, and the morphology of the spread cells was similar to that observed with cells spread on pFN substrata. Protease treatment of the cells, however, was found to inhibit cell spreading on pFN substrata or WGA substrata more than on Con A substrata or RCA I substrata. In the experiment of cells with Con A or WGA inhibited cell spreading on pFN substrata, but RCA I treatment had no effect. Finally, treatment of cells with WGA inhibited binding to cells of pFN beads, but neither Con A nor RCA I affected this interaction. These results indicate that the lectins modify cellular adhesion in different ways, probably by interacting with different surface receptors. The possibility that the pFN receptor is a WGA receptor is discussed.  相似文献   

14.
Integrin-mediated adhesion is regulated by multiple features of the adhesive surface, including its chemical composition, topography, and physical properties. In this study we investigated integrin lateral clustering, as a mechanism to control integrin functions, by characterizing the effect of nanoscale variations in the spacing between adhesive RGD ligands on cell spreading, migration, and focal adhesion dynamics. For this purpose, we used nanopatterned surfaces, containing RGD-biofunctionalized gold dots, surrounded by passivated gaps. By varying the spacing between the dots, we modulated the clustering of the associated integrins. We show that cell-surface attachment is not sensitive to pattern density, whereas the formation of stable focal adhesions and persistent spreading is. Thus cells plated on a 108-nm-spaced pattern exhibit delayed spreading with repeated protrusion-retraction cycles compared to cells growing on a 58-nm pattern. Cell motility on these surfaces is erratic and nonpersistent, leaving thin membrane tethers bound to the RGD pattern. Dynamic molecular profiling indicated that the adhesion sites formed with the 108-nm pattern undergo rapid turnover and contain reduced levels of zyxin. These findings indicate that a critical RGD density is essential for the establishment of mature and stable integrin adhesions, which, in turn, induce efficient cell spreading and formation of focal adhesions.  相似文献   

15.
The integrin-linked kinase (ILK) is a multidomain focal adhesion protein implicated in signal transmission from integrin and growth factor receptors. We have determined that ILK regulates U2OS osteosarcoma cell spreading and motility in a manner requiring both kinase activity and localization. Overexpression of wild-type (WT) ILK resulted in suppression of cell spreading, polarization, and motility to fibronectin. Cell lines overexpressing kinase-dead (S343A) or paxillin binding site mutant ILK proteins display inhibited haptotaxis to fibronectin. Conversely, spreading and motility was potentiated in cells expressing the "dominant negative," non-targeting, kinase-deficient E359K ILK protein. Suppression of cell spreading and motility of WT ILK U2OS cells could be rescued by treatment with the Rho-associated kinase (ROCK) inhibitor Y-27632 or introduction of dominant negative ROCK or RhoA, suggesting these cells have increased RhoA signaling. Activation of focal adhesion kinase (FAK), a negative regulator of RhoA, was reduced in WT ILK cells, whereas overexpression of FAK rescued the observed defects in spreading and cell polarity. Thus, ILK-dependent effects on ROCK and/or RhoA signaling may be mediated through FAK.  相似文献   

16.
Cell migration influences cell-cell interactions to drive cell differentiation and organogenesis. To support proper development, cell migration must be regulated both temporally and spatially. Mesoderm cell migration in the Drosophila embryo serves as an excellent model system to study how cell migration is controlled and influences organogenesis. First, mesoderm spreading transforms the embryo into a multilayered form during gastrulation and, subsequently, cells originating from the caudal visceral mesoderm (CVM) migrate along the entire length of the gut. Here we review our studies, which have focused on the role of fibroblast growth factor (FGF) signaling, and compare and contrast these two different cell migration processes: mesoderm spreading and CVM migration. In both cases, FGF acts as a chemoattractant to guide cells’ directional movement but is likely not the only signal that serves this role. Furthermore, FGF likely modulates cell adhesion properties since FGF mutant phenotypes share similarities with those of cell adhesion molecules. Our working hypothesis is that levels of FGF signaling differentially influence cells’ response to result in either directional movement or changes in adhesive properties.  相似文献   

17.
Cell migration is central to physiological responses to injury and infection and in the design of biomaterial implants. The ability to tune the properties of adhesive materials and relate those properties in a quantitative way to the dynamics of intracellular processes remains a definite challenge in the manipulation of cell migration. Here, we propose the use of poly(vinylmethylsiloxane) (PVMS) networks as novel substrata for cell adhesion and migration. These materials offer the ability to tune independently chemical functionality and elastic modulus. Importantly, PVMS networks are compatible with total internal reflection fluorescence (TIRF) microscopy, which is ideal for interrogating the cell-substratum interface; this latter characteristic presents a distinct advantage over polyacrylamide gels and other materials that swell with water. To demonstrate these capabilities, adhesive peptides containing the arginyl-glycyl-aspartic acid (RGD) tripeptide motif were successfully grafted to the surface of PVMS network using a carboxyl-terminated thiol as a linker. Peptide-specific adhesion, spreading, and random migration of NIH 3T3 mouse fibroblasts were characterized. These experiments show that a peptide containing the synergy sequence of fibronectin (PHSRN) in addition to RGD promotes more productive cell migration without markedly enhancing cell adhesion strength. Using TIRF microscopy, the dynamics of signal transduction through the phosphoinositide 3-kinase pathway were monitored in cells as they migrated on peptide-grafted PVMS surfaces. This approach offers a promising avenue for studies of directed migration and mechanotransduction at the level of intracellular processes.  相似文献   

18.
《The Journal of cell biology》1988,107(5):1863-1871
The molecular mechanisms underlying cell attachment and subsequent cell spreading on laminin are shown to be distinct form one another. Cell spreading is dependent upon the binding of cell surface galactosyltransferase (GalTase) to laminin oligosaccharides, while initial cell attachment to laminin occurs independent of GalTase activity. Anti-GalTase IgG, as well as the GalTase modifier protein, alpha-lactalbumin, both block GalTase activity and inhibited B16-F10 melanoma cell spreading on laminin, but not initial attachment. On the other hand, the addition of UDP galactose, which increases the catalytic turnover of GalTase, slightly increased cell spreading. None of these reagents had any effect on cell spreading on fibronectin. When GalTase substrates within laminin were either blocked by affinity- purified GalTase or eliminated by prior galactosylation, cell attachment appeared normal, but subsequent cell spreading was totally inhibited. The laminin substrate for GalTase was identified as N-linked oligosaccharides primarily on the A chain, and to a lesser extent on B chains. That N-linked oligosaccharides are necessary for cell spreading was shown by the inability of cells to spread on laminin surfaces pretreated with N-glycanase, even though cell attachment was normal. Cell surface GalTase was distinguished from other reported laminin binding proteins, most notably the 68-kD receptor, since they were differentially eluted from laminin affinity columns. These data show that surface GalTase does not participate during initial cell adhesion to laminin, but mediates subsequent cell spreading by binding to its appropriate N-linked oligosaccharide substrate. These results also emphasize that some of laminin's biological properties can be attributed to its oligosaccharide residues.  相似文献   

19.
Starch-activated mouse peritoneal macrophages (STpMAC) plated on plastic demonstrate the adhesive properties typical for activated pMAC: attaching as round cells and, within 15 min, spreading out with marginal membrane ruffles. These attached STpMAC were labeled by lactoperoxidase-catalysed 125I surface iodination, sodium dodecyl- sulfate-lysed, and the lysates electrophoresed on polyacrylamide gels which were examined by autoradiography. The STpMAC morphological phenotype correlates with the labeling of a particular protein (195,000, estimated mol wt). Normal pMAC (NpMAC), from unstimulated mice, do not spread and do not display the 195,000 band. Both pMAC band patterns, including the 195,000 band, are relatively resistant to trypsin digestion, as is pMAC adhesion itself trypsin-resistant. Neither class of pMAC exhibits fibronectin (Cell Adhesion Factor, LETS protein) which is a component in the adhesive matrix of cells forming trypsin-sensitive monolayers. When pMAC are tested against antifibronectin antibody, these cells do not give immunofluorescent staining. In summary, two functions in pMAC adhesion, enzyme resistance and the ability to spread, appear related to molecular properties distinctive for pMAC surface protein.  相似文献   

20.
Summary Cell recognition and adhesion are important events in embryonic development as well as in adult physiology. In recent years several cell adhesion molecules (CAMs), that mediate adhesive interactions between vertebrate cells, have been identified and characterized. These CAMs are in general cell surface-associated high molecular weight glycoproteins. Two groups of CAMs have been classified: primary CAMs, that appear early in development; secondary CAMs, that become expressed later and with a more restricted tissue distribution. One example of a secondary CAM is cellCAM 105. This glycoprotein was originally identified in rat hepatocytes, and was shown to be involved in the reaggregation of freshly isolated hepatocytesin vitro. Physico-chemical studies on pure cellCAM 105 have demonstrated that it has adhesive properties and can bind to itself in a homophilic, calcium-independent reaction. Immunochemical and immunohistochemical investigations have shown that cellCAM 105 occurs in liver, several epithelia, vessel endothelia, platelets and polymorphonuclear leukocytes, and that it is expressed primarily in terminally differentiated cells or cells that are undergoing terminal differentiation. Available information suggests that cellCAM 105 has different functions in different cell types, and that the common functional denominator might be membrane-membrane binding. Recent data indicate that cellCAM 105 is a calmodulin-binding protein, suggesting that cellCAM-mediated cell binding could be involved in transmembrane signalling.Abbreviation CAM cell adhesion molecule  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号