首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIMS: The genus Eucalyptus occupies a broad ecological range, forming the dominant canopy in many Australian ecosystems. Many Eucalyptus species are renowned for tolerance to aridity, yet inter-specific variation in physiological traits, particularly water relations parameters, contributing to this tolerance is weakly characterized only in a limited taxonomic range. The study tests the hypothesis that differences in the distribution of Eucalyptus species is related to cellular water relations. METHODS: Six eucalypt species originating from (1) contrasting environments for aridity and (2) diverse taxonomic groups were grown in pots and subjected to the effects of water deficit over a 10-week period. Water potential, relative water content and osmotic parameters were analysed by using pressure-volume curves and related to gas exchange, photosynthesis and biomass. KEY RESULTS: The six eucalypt species differed in response to water deficit. Most significantly, species from high rainfall environments (E. obliqua, E. rubida) and the phreatophyte (E. camaldulensis) had lower osmotic potential under water deficit via accumulation of cellular osmotica (osmotic adjustment). In contrast, species from low rainfall environments (E. cladocalyx, E. polyanthemos and E. tricarpa) had lower osmotic potential through a combination of both constitutive solutes and osmotic adjustment, combined with reductions in leaf water content. CONCLUSIONS: It is demonstrated that osmotic adjustment is a common response to water deficit in six eucalypt species. In addition, significant inter-specific variation in osmotic potential correlates with species distribution in environments where water is scarce. This provides a physiological explanation for aridity tolerance and emphasizes the need to identify osmolytes that accumulate under stress in the genus Eucalyptus.  相似文献   

2.
Adaptation to aridity is considered a major factor in the evolution of the genus Eucalyptus. For the first time, targeted metabolite profiling has uncovered a quantitative yet discrete phytochemical link with eucalypt taxonomy. The distribution of cyclitols among Eucalyptus species, and a range of other Australian tree genera, support their proposed functions in plant tissues and provide putative links with the acclimation of trees to arid environments.  相似文献   

3.
This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO2 assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.  相似文献   

4.
The role of aquaporin RWC3 in drought avoidance in rice   总被引:24,自引:0,他引:24  
Although the discovery of aquaporins in plants has resulted in a paradigm shift in the understanding of plant water relations, the relationship between aquaporins and drought resistance still remains elusive. From an agronomic viewpoint, upland rice is traditionally considered as showing drought avoidance. In the investigation of different morphological and physiological responses of upland rice (Oryza sativa L. spp indica cv. Zhonghan 3) and lowland rice (O. sativa L. spp japonica cv. Xiushui 63) to water deficit, we observed young leaf rolling and the remarkable decline of cumulative transpiration in the upland rice. The expression of water channel protein RWC3 mRNA was increased in upland rice at the early response (up to 4 h) to the 20% polyethylene glycol (PEG) 6000 treatment, whereas there was no significant expression changes in lowland rice. Protein levels were increased in upland rice and decreased in lowland rice at 10 h after the water deficit. The up-regulation of RWC3 in upland rice fits well with the knowledge that upland rice adopts the mechanism of drought avoidance. The physiological significance of this RWC3 up-regulation was then explored with the over-expression of RWC3 in transgenic lowland rice (O. sativa L. spp japonica cv. Zhonghua 11) controlled by a stress-inducible SWPA2 promoter. Compared to the wild-type plant, the transgenic lowland rice exhibited higher root osmotic hydraulic conductivity (Lp), leaf water potential and relative cumulative transpiration at the end of 10 h PEG treatment. These results indicated that RWC3 probably played a role in drought avoidance in rice.  相似文献   

5.
Understanding trees adaptation to arid, saline conditions is a major challenge for catchment revegetation in Australia. The accumulation of low molecular weight solutes is an established response of trees to the effects of salt and/or drought stress. Recent studies have shown that quercitol – a cyclitol – contributes significantly towards the adjustment of osmotic potential in some species of Eucalyptus. The present study investigated the role of quercitol in leaf tissues of Eucalyptus leptophylla (F. Muell) under fluctuating environmental stresses. Analysis of leaf tissues from trees growing at distances between 0 and 125 m from hyper-saline lakes suggests that quercitol contributes significantly to the adjustment of osmotic potential induced by drought in E. leptophylla. The presence of substantial concentrations of quercitol in xylem sap suggests that quercitol plays additional roles in signalling amelioration of osmotic stress in myrtaceous species. Quercitol concentrations fluctuate in both xylem and leaf tissues on a seasonal basis, suggesting a form of environmental regulation of solutes. The capacity of soil profiles to store rainwater, rather than proximity to hyper-saline groundwater largely determined osmotic stress in studied trees. Understanding such avoidance/tolerance mechanisms will be crucial to advance tree selection and breeding for stress tolerance.  相似文献   

6.
Drought-stressed plants accumulate cyclitols such as myo-inositol, pinitol, quercitol in the cytosol. These solutes (compatible solutes) protect plants from stress effects. Synthetic myo-inositol was used in the investigation of drought stress tolerance in pepper plants. Hydrogen peroxide (H2O2), membrane damage, ascorbate peroxidase (AP), catalase (CAT), proline and calcium increased in plants under drought conditions. Water status, calcium level, glutathione reductase activities increased in myo-inositol treated Capsicum annuum L. (pepper) under drought stress. Exogenous myo-inositol significantly decreased H2O2, membrane damage and proline levels and AP (except for 5 µM) and CAT activity, compared with untreated plants. Myo-inositol can play a role as effective as proline in signal transduction and in regulating concentrations of reactive oxygen species within tolerable ranges and in maintaining cell turgor by binding water molecules. Myo-inositol may become a useful instrument to eliminate the negative effects of drought environments.  相似文献   

7.
Some species of the Lathyrus genus are among the most promising crops for marginal lands, with high resilience to drought, flood, and fungal diseases, combined with high yields and seed nutritional value. However, lack of knowledge on the mechanisms underlying its outstanding performance and methodologies to identify elite genotypes has hampered its proper use in breeding. Chlorophyll a fast fluorescence transient(JIP test), was used to evaluate water deficit(WD)resistance in Lathyrus genus. Our results reveal unaltered photochemical values for all studied genotypes showing resistance to mild WD. Under severe WD, two Lathyrus sativus genotypes showed remarkable resilience maintaining the photochemical efficiency, contrary to other genotypes studied.Performance index(PIABS) is the best parameter to screen genotypes with improved performance and grain production under WD. Moreover, we found that JIP indices are good indicators of genotypic grain production under WD. Quantum yield of electron transport(wEo) and efficiency with which trapped excitons can move electrons further than QA(c0)revealed as important traits related to improved photosynthetic performance and should be exploited in future Lathyrus germplasm improvements. The JIP test herein described showed to be an expeditious tool to screen and to identify elite genotypes with improved drought resistance.  相似文献   

8.
Water relations and photosynthetic characteristics of plants of Lycium nodosum grown under increasing water deficit (WD), saline spray (SS) or saline irrigation (SI) were studied. Plants of this perennial, deciduous shrub growing in the coastal thorn scrubs of Venezuela show succulent leaves which persist for approx. 1 month after the beginning of the dry season; leaf succulence is higher in populations closer to the sea. These observations suggested that L. nodosum is tolerant both to WD and salinity. In the glasshouse, WD caused a marked decrease in the xylem water potential (psi), leaf osmotic potential (psi(s)) and relative water content (RWC) after 21 d; additionally, photosynthetic rate (A), carboxylation efficiency (CE) and stomatal conductance (gs) decreased by more than 90 %. In contrast, in plants treated for 21 d with a foliar spray with 35 per thousand NaCl or irrigation with a 10 % NaCl solution, psi and RWC remained nearly constant, while psi(s) decreased by 30 %, and A, CE and gs decreased by more than 80 %. An osmotic adjustment of 0.60 (SS) and 0.94 MPa (SI) was measured. Relative stomatal and mesophyll limitations to A increased with both WD and SS, but were not determined for SI-treated plants. No evidence of chronic photoinhibition due to any treatment was observed, since maximum quantum yield of PSII, Fv/Fm, did not change with either drought in the field or water or salinity stress in the glasshouse. Nevertheless, WD and SI treatments caused a decrease in the photochemical (qP) and an increase in the non-photochemical (qN) quenching coefficients relative to controls; qN was unaffected by the SS treatment. The occurrence of co-limitation of A by stomatal and non-stomatal factors in plants of L. nodosum may be associated with the extended leaf duration under water or saline stress. Additionally, osmotic adjustment may partly explain the relative maintenance of A and gs in the SS and SI treatments and the tolerance to salinity of plants of this species in coastal habitats.  相似文献   

9.
During 2003–2005, we examined the effect of seasonal drought on water status, gas exchange, δ13C, chlorophyll fluorescence and spectral reflectance in six woody species in a valley savanna near the Yuanjiang River (the upper Red River) in southwestern China. Three different phenological types of these woody species were compared, i.e., an evergreen species, Cyclobalanopsis helferiana, two winter-deciduous (WD) species, Buchanania latifolia and Symplocos racemosa, and three drought-deciduous (DD) species, Terminthia paniculata, Wendlandia tinctoria and Woodfordia fruticosa. We aimed to test the following three hypotheses: (1) the evergreen and WD species employ a drought avoidance strategy, whereas DD species employ a drought tolerance strategy; (2) the evergreen and WD species have a more economical water use strategy than the DD species and (3) the evergreen and WD species have a stronger photoprotection capacity through thermal dissipation than the DD species. At the end of a prolonged drought, the predawn leaf water potential (Ψpd) in C. helferiana and S. racemosa dropped to ca. −0.8 MPa, whereas the Ψpd in B. latifolia remained close to zero and DD species were leafless. In the rainy seasons, maximal photosynthetic rates of the evergreen (18.4 μmol m−2 s−1) and W. fruticosa (18.0 μmol m−2 s−1) were higher than those of the other four species (12.2−13.8 μmol m−2 s−1). The evergreen and WD species responded to drought by closing stomata and thus maintained a constant relative water content (RWC), which is a typical drought avoidance strategy; however, it is at the expense of carbon gain. DD species maintained a high photosynthetic capacity with a decrease in both stomatal conductance and RWC until the driest period, and then shifted from the drought tolerance strategy to the avoidance mechanism by shoot dieback. There was no significant difference in the means of δ13C across the phenological groups. The evergreen and WD species had stronger heat dissipation than the DD species in dry seasons. All species increased leaf spectral reflectance, probably because of degradation of chlorophyll as indicated by the leaf reflectance index, which should reduce light harvesting. All species showed a strong increase in the ratio of red to green spectral reflectance of leaves during dry seasons, indicating the accumulation of anthocyanin, which may contribute to screening sunlight and scavenging reactive oxygen species. Different responses to drought of savanna woody species with different leaf phenologies may facilitate the partitioning of resource use and hence their co-existence.  相似文献   

10.
Morpho-physiological and biochemical analyses were carried out in eight diverse indigenous muskmelon (Cucumis melo L.) genotypes exposed to different degrees of water deficit (WD). The ability of genotypes MM-7, and especially MM-6, to counteract better the negative effect of WD was associated with maintaining higher relative water content (RWC), photosynthetic rate, efficiency of PSII, and photosynthetic pigments compare to other genotypes. Furthermore, MM-6 showed a better ability to maintain cellular homeostasis than the others. It was indicated by a stimulated antioxidative defense system, i.e., higher activities of antioxidant enzymes, accumulation of nonenzymatic antioxidants together with lower concentration of reactive oxygen species and malondialdehyde. However, the genotypes MM-2 and MM-5 suffered greatly due to WD and showed reduced RWC, photosynthetic rates, pigment content, and exhibited higher oxidative stress observed as lower antioxidant enzyme activities.  相似文献   

11.
Drought is one of the critical conditions for the growth and productivity of many crops including mung bean (Vigna radiata L. Wilczek). Screening of genotypes for variations is one of the suitable strategies for evaluating crop adaptability and global food security. In this context, the study investigated the physiological and biochemical responses of four drought tolerant (BARI Mung-8, BMX-08010-2, BMX-010015, BMX-08009-7), and four drought sensitive (BARI Mung-1, BARI Mung-3, BU Mung-4, BMX-05001) mung bean genotypes under wellwatered (WW) and water deficit (WD) conditions. The WW treatment maintained sufficient soil moisture (22% ± 0.5%, i.e., 30% deficit of available water) by regularly supplying water. Whereas, the WD treatment was maintained throughout the growing period, and water was applied when the wilting symptom appeared. The drought tolerant (DT) genotypes BARI Mung-8, BMX-08010-2, BMX-010015, BMX-08009-7 showed a high level of proline accumulation (2.52–5.99 mg g−1 FW), photosynthetic pigment (total chlorophyll 2.96–3.27 mg g−1 FW at flowering stage, and 1.62–2.38 mg g−1 FW at pod developing stage), plant water relation attributes including relative water content (RWC) (82%–84%), water retention capacity (WRC) (12–14) as well as lower water saturation deficit (WSD) (19%–23%), and water uptake capacity (WUC) (2.58–2.89) under WD condition, which provided consequently higher relative seed yield. These indicate that the tolerant genotypes gained better physiobiochemical attributes and adaptability in response to drought conditions. Furthermore, the genotype BMX- 08010-2 showed superiority in terms of those physio-biochemical traits, susceptibility index (SSI) and stress tolerance index (STI) to other genotypes. Based on the physiological and biochemical responses, the BMX-08010-2 was found to be a suitable genotype for sustaining yield under drought stress, and subsequently, it could be recommended for crop improvement through hybridization programs. In addition, the identified traits can be used as markers to identify tolerant genotypes for drought-prone areas.  相似文献   

12.
1. To test whether differences in response to drought can help to explain the differing distributions of Briza media and Koeleria macrantha , changes in their leaf growth and water relations during soil drying were measured. After droughting, plants were re-watered and recovery recorded.
2. Leaf growth of the two species showed a similar sensitivity to drought with respect to duration of soil drying and soil moisture content.
3. In both species tiller base relative water content (RWC) was maintained at similar levels to controls until soil moisture content had fallen to less than 9%. This may aid survival in habitats subject to periodic droughting by preventing damage to the meristems.
4. Briza media did not respond to re-watering. However, plants of K. macrantha re-grew after periods of over 20 days of drought, when tiller base RWCs had fallen as low as 13%. This ability to resurrect may explain the occurrence of K. macrantha in xeric calcicolous grasslands subject to episodes of severe droughting, from which B. media is absent.  相似文献   

13.
Aim  Increasing aridity over geological time-scales has driven a high degree of speciation within the Eucalyptus group in Australia. Isolation of gene pools by climatic and edaphic conditions and high rates of out-crossing have given rise to a large diversity of adaptive traits. Among these traits, adaptations of cellular biochemistry are likely to be significant in preserving cellular function during arid conditions. The aim of this study was to determine the quantitative and qualitative distribution of soluble carbohydrates and polyols in Eucalyptus .
Location  Australia.
Methods  We sampled 279 of the 700+ documented eucalypts (in the three genera comprising the eucalypts: Angophora Cav., Corymbia Hill & Johnson and Eucalyptus L'Hér.) and analysed leaf tissues for the occurrence of low-molecular-weight carbohydrates and polyols.
Results  We have uncovered a discrete pattern in concentration of quercitol (a cyclitol) that correlates strongly with the current taxonomic classification based on both morphology and DNA sequencing. We also uncovered a further and stronger correlation between the presence of quercitol in leaf tissues and a reduced growth (mallee) form.
Main conclusions  These findings, together with the chemical properties of quercitol, suggest that we have uncovered a chemical marker of structural adaptations to arid conditions, thus providing a putative, broad-scale functional link to adaptation to aridity.  相似文献   

14.
Alterations in the metabolism of Lupinus albus organs that result from and subsequently follow a period of severe water deficit (WD) are described. By means of 13C-nuclear magnetic resonance (NMR), changes in the major metabolites were monitored in several plant organs (leaflets and petiole, roots, stem stele and cortex). During the stress, most of the leaves were lost and the stem functioned as a storage repository of sugars (glucose and sucrose) and amino acids (asparagine and proline). Upon rewatering, lupin plants rapidly re-established the relative water content (RWC) and produced new leaves. However, at the metabolic level, the events seem to be more complex, since proline (a stress related metabolite) disappeared rapidly while sugars and asparagine reached the initial pattern more slowly, particularly in the stem.  相似文献   

15.
三种锦鸡儿属植物水力结构特征及其干旱适应策略   总被引:1,自引:0,他引:1  
龚容  徐霞  田晓宇  江红蕾  李霞  关梦茜 《生态学报》2018,38(14):4984-4993
水分胁迫是干旱半干旱区限制植物生长的主要因素。以干旱半干旱区的3种锦鸡儿属植物为研究对象,从生态适应策略角度来分析3种锦鸡儿植物产生生态分离的原因。对三种锦鸡儿属植物茎干叶片的显微结构、生理功能(导水率、光合速率以及水分利用效率)进行测定,并统计了3种锦鸡儿植株的形态特征,如一、二级枝的直径、长度、末端叶面积。结果表明:三种锦鸡儿属植物都能形成较小的导管直径来适应旱生环境,但是在导水结构上又表现出一定的差异性。中间锦鸡儿的导管直径最小,次脉密度和最大净光合速率最大;柠条锦鸡儿的导管直径、叶片厚度和比叶重(LMA)最大。小叶锦鸡儿在导水率下降50%时的水势(P_(50))最大,水分胁迫时极易发生栓塞,但正是由于导管的栓塞降低了水分运输效率,使其在旱生环境中能够通过减少水分的供应来降低水分的丧失,从而保证自身生长的水分需求;而中间锦鸡儿则主要通过减小导管直径来适应旱生环境;柠条锦鸡儿的水分利用效率最高,抗栓塞能力最强,抗旱性最好,同时柠条锦鸡儿可以通过减少蒸腾面积来减少水分的丧失。植物的导管直径大小、叶片厚度、LMA、叶脉密度对植物导水速率、光合速率等生理功能都有一定的影响。  相似文献   

16.
17.
The ability of tree species to cope with anticipated decrease in water availability is still poorly understood. We evaluated the potential of Norway spruce, Scots pine, European larch, black pine, and Douglas‐fir to withstand drought in a drier future climate by analyzing their past growth and physiological responses at a xeric and a mesic site in Central Europe using dendroecological methods. Earlywood, latewood, and total ring width, as well as the δ13C and δ18O in early‐ and latewood were measured and statistically related to a multiscalar soil water deficit index from 1961 to 2009. At the xeric site, δ13C values of all species were strongly linked to water deficits that lasted longer than 11 months, indicating a long‐term cumulative effect on the carbon pool. Trees at the xeric site were particularly sensitive to soil water recharge in the preceding autumn and early spring. The native species European larch and Norway spruce, growing close to their dry distribution limit at the xeric site, were found to be the most vulnerable species to soil water deficits. At the mesic site, summer water availability was critical for all species, whereas water availability prior to the growing season was less important. Trees at the mesic were more vulnerable to water deficits of shorter duration than the xeric site. We conclude that if summers become drier, trees growing on mesic sites will undergo significant growth reductions, whereas at their dry distribution limit in the Alps, tree growth of the highly sensitive spruce and larch may collapse, likely inducing dieback and compromising the provision of ecosystem services. However, the magnitude of these changes will be mediated strongly by soil water recharge in winter and thus water availability at the beginning of the growing season.  相似文献   

18.
The Rice varieties Araure 4 (A4) and Fonaiap 2000 (F2000) were grown in the glasshouse under natural sunlight and subjected to drought at heading. The drought induced changes in chlorophyll a fluorescence parameters, pigment composition, D1 contents and carbohydrate accumulation were investigated. Drought decreased phiPS II, FV'/FM' and qP, and increased qN in both varieties. F2000 had larger values of phiPS II and FV'/FM' at a lower RWC than A4. With the onset of drought only A4 increased the xanthophyll cycle pool, F2000 remaining constant throughout the drought cycle. Irrigated plants of A4 had a Larger de-epoxidation state (DEPS) of the xanthophyll cycle than F2000. A 40% increase in DEPS was induced by drought in both varieties but in A4 it was attained at a larger RWC than in F2000. Drought increased glucose and fructose contents of leaves 8-fold in A4 and 3-fold in F2000. Contrarily, sucrose contents decreased with drought but the effects were larger in A4 than in F2000. Sugars accumulation preceded and was proportional to the decrease in PS II activity elicited by drought in both varieties. In F2000 a decrease in D1 content smaller than 20% occurred at 70% of RWC, whereas droughted plants of A4 had lost 80% of D1 protein at 77% of RWC. Our data show that drought severely affected PS II activity and its main regulatory mechanisms in rice. There are genotypic differences in the response of PS II activity to drought that could be exploited as traits for selection to drought tolerance. There is a possible link between the drought-induced sugars accumulation in the flag leaf and the response of PS II to water deficit.  相似文献   

19.
Three grasses (Poaceae) of different C(4) subtypes, Paspalum dilatatum (NADP-malic enzyme [ME]), Cynodon dactylon (NAD-ME) and Zoysia japonica (phosphoenolpyruvate carboxykinase), occur in natural habitats that differ in annual rainfall. Their leaf characteristics were studied to identify traits related to drought tolerance. Plants were grown in pots, and water deficit was gradually induced by withholding water. Leaves of Z. japonica had the greatest and P. dilatatum the lowest relative dry matter content. Transverse sections of leaves that developed during the water deficit showed little change compared to control leaves, consistent with low phenotypic plasticity. Anatomical features distinguished the three species, with xeromorphic characteristics most strongly represented in Z. japonica. The leaf relative water content (RWC) decreased with the soil water content similarly for the three grasses. However, at 80% RWC, the leaf water potential was -3.1 MPa for Z. japonica and only -1.3 MPa for P. dilatatum and C. dactylon. Soluble amino acids, especially proline, increased as RWC decreased in leaves of C. dactylon and Z. japonica. Phenylalanine, valine, leucine, and isoleucine increased more in Z. japonica than in the other two species. The results provide evidence that C. dactylon and, especially, Z. japonica have evolved leaf traits better suited to arid habitats.  相似文献   

20.

Background and aims

Green roofs are often installed to reduce urban stormwater runoff. To optimally achieve this, green roof plants need to use water when available, but reduce transpiration when limited to ensure survival. Succulent species commonly planted on green roofs do not achieve this. Water availability on green roofs is analogous to natural shallow-soil habitats including rock outcrops. We aimed to determine whether granite outcrop species could improve green roof performance by evaluating water use strategies under contrasting water availability.

Methods

Physiological and morphological responses of 12 granite outcrop species with different life-forms (monocots, herbs and shrubs) and a common green roof succulent were compared in well watered (WW) and water deficit (WD) treatments.

Key results

Granite outcrop species showed a variety of water-use strategies. Unlike the green roof succulent all of the granite outcrop species showed plasticity in water use. Monocot and herb species showed high water use under WW but also high water status under WD. This was achieved by large reductions in transpiration under WD. Maintenance of water status was also related to high root mass fraction.

Conclusions

By developing a conceptual model using physiological traits we were able to select species suitable for green roofs. The ideal species for green roofs were high water users which were also drought tolerant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号