首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, research interest in plant water uptake strategies has rapidly increased in many disciplines, such as hydrology, plant ecology and ecophysiology. Quantitative modelling approaches to estimate plant water uptake and spatiotemporal dynamics have significantly advanced through different disciplines across scales. Despite this progress, major limitations, for example, predicting plant water uptake under drought or drought impact at large scales, remain. These are less attributed to limitations in process understanding, but rather to a lack of implementation of cross-disciplinary insights into plant water uptake model structure. The main goal of this review is to highlight how the four dominant model approaches, that is, Feddes approach, hydrodynamic approach, optimality and statistical approaches, can be and have been used to create interdisciplinary hybrid models enabling a holistic system understanding that, among other things, embeds plant water uptake plasticity into a broader conceptual view of soil–plant feedbacks of water, nutrient and carbon cycling, or reflects observed drought responses of plant–soil feedbacks and their dynamics under, that is, drought. Specifically, we provide examples of how integration of Bayesian and hydrodynamic approaches might overcome challenges in interpreting plant water uptake related to different travel and residence times of different plant water sources or trade-offs between root system optimization to forage for water and nutrients during different seasons and phenological stages.  相似文献   

2.
The paper presents a study on the molecular water dynamics on forcemeats and sausages containing plant fat and dietary fibre. The aim of the experiments was to analyse the state of water binding in relation to the way of preparation of the plant fat added. The addition of plant fat to sausages in solid form caused a considerable increase in the molecular dynamics of both water fractions in comparison with the forcemeat. Only the application of liquid plant fat restricted molecule mobility of both water fractions. The emulsification of plant fat resulted in the weakest water binding (140% productivity). Decreasing the amount of added water (productivity 130%) led to the improvement of the system relaxation parameters. In comparison with the control sample, the content of free water in relation to bound water decreased. The addition of fibre increased the content of free water in comparison with the systems without dietary fibre.  相似文献   

3.
通过对两种肥力条件下的“8455”小麦植株化学成分与麦长管蚜和麦二叉蚜种群消长关系的研究与分析,结果表明可溶性糖、含钾量、含水量是影响麦二叉蚜种群消长的主要因子,胱氨酸是影响麦长管蚜种群消长的主要因子.  相似文献   

4.
通过对两种肥力条件下的“8455”小麦植株化学成分与麦长管蚜和麦二叉蚜种群消长关系的研究与分析,结果表明可溶性糖、含钾量、含水量是影响麦二叉蚜种群消长的主要因子,胱氨酸是影响麦长管蚜种群消长的主要因子。  相似文献   

5.
研究群落演替过程中植物功能性状与土壤含水量的关系, 揭示植物对水分供给变化的响应策略, 具有重要的生态学意义。该研究以浙江东部天童山、南山和双峰山的3个常绿阔叶林演替系列为对象, 旨在探索不同演替阶段常见植物的功能性状与森林群落土壤含水量的相互关系。研究结果显示: 森林演替中后期的树木高度、树冠面积、叶片干物质含量显著大于演替前期植物; 相反, 叶片净光合速率和蒸腾速率随演替进程而降低。随森林演替, 表层土壤(0-20 cm)的含水量显著增加, 深层土壤(20-40 cm)含水量随演替进程增加但不显著。表层土壤含水量与树木高度、树冠面积和叶片干物质含量显著正相关, 与叶片净光合速率和蒸腾速率显著负相关; 深层土壤含水量与树冠面积显著正相关, 与叶片净光合速率、气孔导度和蒸腾速率显著负相关。树木高度、树冠面积、叶片干物质含量、叶片净光合速率、气孔导度和蒸腾速率均可解释土壤含水量随演替进程的变化趋势, 而冠长比对土壤水分变化的响应最为敏感。  相似文献   

6.
The dynamics of phreatophyte vegetation are strongly coupled to those of the shallow phreatic aquifers from which phreatophytes extract water. Vegetation is able to influence the depth of the water table, which, in turn, can induce stress in vegetation. These interactions are likely to affect the composition and structure of phreatophyte plant communities, as well as their successional dynamics. Despite the environmental and economical value of many wetland plant ecosystems around the world, the impact of vegetation-water table interactions on ecosystem succession and interspecies competition in phreatophyte plant communities remains poorly understood. This study develops a minimalistic modelling framework to investigate the dynamics of two phreatophyte species, and their interactions with the water table. In spite of its simplicity, the model exhibits a remarkable variety of dynamical behaviors, especially when the water table depth is forced by external drivers. It is shown that, even when one of the two species is dominant with respect to the other, these two species can coexist showing periodic, quasi-periodic, and chaotic dynamics. Moreover, in the presence of a random environmental forcing, noise-induced coexistence may emerge.  相似文献   

7.
The dynamics of semi-arid plant communities are determined by the interplay between competition and facilitation among plants. The sign and strength of these biotic interactions depend on plant traits. However, the relationships between plant traits and biotic interactions, and the consequences for plant communities are still poorly understood. Our objective here was to investigate, with a modelling approach, the role of plant reproductive traits on biotic interactions, and the consequences for processes such as plant succession and invasion. The dynamics of two plant types were modelled with a spatially-explicit integrodifferential model: (1) a plant with seed dispersal (colonizer of bare soil) and (2) a plant with local vegetative propagation (local competitor). Both plant types were involved in facilitation due to a local positive feedback between vegetation biomass and soil water availability, which promoted establishment and growth. Plants in the system also competed for limited water. The efficiency in water acquisition (dependent on reproductive and growth plant traits) determined which plant type dominated the community at the steady state. Facilitative interactions between plant types also played an important role in the community dynamics, promoting establishment in the driest conditions and recovery from low biomass. Plants with vegetative propagation took advantage of the ability of seed dispersers to establish on bare soil from a low initial biomass. Seed dispersers were good invaders, maintained high biomass at intermediate and high rainfall and showed a high ability in taking profit from the positive feedback originated by plants with vegetative propagation under the driest conditions. However, seed dispersers lost competitiveness with an increasing investment in fecundity. All together, our results showed that reproductive plant traits can affect the balance between facilitative and competitive interactions. Understanding this effect of plant traits on biotic interactions provides insights in processes such as plant succession and shrub encroachment.  相似文献   

8.
The plant hormone abscisic acid (ABA) is a primary regulator of plant transpiration, but its influence in determining seasonal stomatal behaviour in natural plant communities is poorly understood. We examined distantly related vascular plants growing together in a seasonally dry, monsoonal environment to determine whether ABA dynamics contributed to contrasting water use patterns in this natural setting. Regular sampling of angiosperm, cycad, conifer and fern species revealed characteristic seasonal patterns in ABA production, but these were highly distinct among species. Although no general relationship was observed between ABA levels, plant hydration or stomatal conductance among species, the seasonal dynamics in stomatal behaviour within species were predictable functions of either ABA or leaf water potential. Strong divergence in the seasonal role of ABA among species suggests that modification in ABA–stomatal interactions represents an important evolutionary pathway for adaptation in plant water use.  相似文献   

9.
三江平原湿地生态系统P、K分布特征及季节动态研究   总被引:48,自引:4,他引:48  
对三江平原毛果苔草,狭叶甜茅(Carex lasixarpa-Glyeria spiculosa)湿地和小叶章(Deyeuxia angusti,folia)湿地的值物,土壤和地表积水进行P,K含量测定,运用一元非线性回归分析对P,K元素含量季节动态特征进行了探讨,结果表明,不同种类的湿地植物,同种植物的不同器官其P,K含量存在的差异,但部特点是K含量高于P含量,说明湿地植物具有富集K的特性,两类湿地土壤P,K全量,速效果的剖面分布特征也不同,名层土壤全K含量均高于全P含量,植物,土壤和地表积水中P,K含量均有明的季节动态变化,一元非线性回归模拟均得到较理想的模拟模型,相关系数大多在0.9以上,F检验较显著。  相似文献   

10.
甘肃民勤地区不同地下水埋深花棒蒸腾耗水研究   总被引:13,自引:1,他引:12  
采用非称重式地下水恒位补偿蒸渗仪稳定供水系统、气候观测、土壤含水量测定等方法,研究了1995年分别定植于地下水埋深为1.6m、2.6m和3.6m蒸渗仪栽培池中的1年生花棒(Hedysarum scoparium)从1995年至2000年单株的蒸腾耗水规律。结果表明:(1)花棒不同生长阶段(年龄)蒸腾耗水对地下水埋深具有不同的响应特点。1年生花棒2.6m和3.6m地下水埋深条件下蒸腾量分别比1.6m高出188.35mm和113.7mm;4年生花棒蒸腾耗水量比1年生有显著增长,1.6m、2.6m和3.6m地下水埋深的花棒蒸腾量分别为440.96mm、397.78mm和471.88mm,较1年生增长了3.5倍、0.39倍和1.2倍;6年生各地下水埋深蒸腾量有不同程度的下降或稳定趋势,2.6m和3.6m埋深分别比4年生下降了16.3%和36.7%,而1.6m埋深几乎不变;(2)生长季花棒蒸腾耗水占全年蒸腾量的绝大部分,但由于受气候、不同生长阶段植物生理生态以及土壤含水量分布等的影响,各水位1年生和6年生花棒生长季蒸腾耗水主要集中在径生长期(7~8月份),而4年生花棒各水位条件下生长季不同阶段蒸腾耗水相差不大,同一生长季内各水位间的蒸腾耗相差较小;(3)生长季花棒蒸腾耗水量与环境因子单因素关系分析表明,不同地下水埋深条件下花棒蒸腾耗水主要相关因子不尽相同.但其机理仍需进一步研究。  相似文献   

11.
在荒漠生态系统中,水分是植物生长和植被动态的一个限制因子。来自深层土壤或地下水相对稳定的水分对于干旱条件下植物的生存至关重要。在荒漠生态系统中,保护和恢复濒危植物的根本在于理解它们的水分利用策略,例如蒙古高原的沙冬青(Ammopiptanthus mongolicus)。本 论文通过稳定氢、氧同位素技术研究了沙冬青和与其伴生的两种灌木黑沙蒿(Artemisiaordosica)和旱蒿(Artemisiaxerophytica)的 主要水分来源;利用IsoSource模型计算了不同水分来源对每个物种的贡献,并通过比较3种灌木叶片δ 13C值和和其根系分布探讨了3种 灌木的长期水分利用策略。结果表明,沙冬青依赖地下水和150–200 cm 深层土壤水,前者几乎贡献其水源的一半。黑沙蒿主要利用150–200 cm 深 层土壤水,但是夏季和秋季也利用100 cm以内的浅层土壤水。旱蒿主要利用150–200 cm深层土壤水和地下水,后者对其总水源的贡献率 大约为30%–60%。3种灌木具有双型根系或深根系,这些根系特征与其水分来源一致。常绿植物沙冬青的叶片δ 13C值高于两种落叶蒿属灌木,这可能使其在适应荒漠生态系统中具有优势。因此,地下水是干旱年份蒙古高原濒危灌木沙冬青的一个主要水源,而且沙冬青和两种蒿属灌木竞争深层土壤水和地下水。  相似文献   

12.
Questions: What are the effects of raised water levels on wet grassland plant communities and dynamics? To what extent do time since raised water levels, vegetation management and water regime influence community composition? Location: Pevensey Levels, southeast England, UK. Methods: Plant communities and hydrology were monitored during 2001‐03 within 23 wet grassland meadows and pastures where water levels had been raised for nature conservation at different times over 21 years. Community variations were examined using species abundance and ecological traits. Results: Water regime, measured as duration of flooding, groundwater level and soil moisture was significantly related to plant community variation. Communities were divided into grasslands where inundation was shallow (≤8 cm) and relatively short (≤3 months) and sites where deeper flooding was prolonged (≥5 months), supporting a variety of wetland vegetation. With increasing wetness, sites were characterised by more bare ground and wetland plants such as sedges, helophytes and hydrophytes, and species with a stress‐tolerating competitive strategy. All sites showed considerable annual dynamics, especially those with substantially raised water levels. There were no significant relationships between time since water levels were raised and plant community composition. Grassland management exerted a limited influence upon vegetation compared to water regime. Conclusions: Grassland plant communities are responsive to raised water levels and have potential for a rapid transition to wetland vegetation, irrespective of grazing or cutting management. Creation or restoration of wet grasslands by (re)wetting is feasible but challenging due to the high dynamism of wetland plant communities and the need for substantially raised water levels and prolonged flooding to produce significant community changes.  相似文献   

13.
We have developed a plant growth system to analyze water dynamics in the roots of a small model plant, Arabidopsis thaliana, by nuclear magnetic resonance (NMR) microscopic imaging. Using the two-dimensional slice technique, we obtained a series of images with high signal-to-noise ratio indicating the water distribution in the root. To demonstrate light regulation of water transport in the root and involvement of aquaporin gene expression, we visualized the distribution of water in Arabidopsis roots under various light conditions and compared the data with the expression profiles of two aquaporin genes. (1)H-NMR imaging revealed that water content in Arabidopsis roots is lower in the light than in the dark. This diurnal variation in water content was clearly observed in the basal zone of the root. In addition, an autonomous rhythm of water dynamics was observed under continuous light (LL) and darkness (DD). However, the circadian oscillation in water dynamics was obscured in the early-flowering 3 (elf3) mutant under LL. The expression of both the aquaporin genes, AtPIP1;2 and AtPIP2;1, oscillated with the circadian rhythm under LL conditions in wild-type seedlings, but not in the elf3 mutant. These results demonstrate the advantages of our technique for monitoring water dynamics in roots of living Arabidopsis seedlings, and suggest that the circadian clock modulates water dynamics and aquaporin expression.  相似文献   

14.

Main conclusion

Quantitative neutron imaging is a promising technique to investigate leaf water flow and transpiration in real time and has perspectives towards studies of plant response to environmental conditions and plant water stress. The leaf hydraulic architecture is a key determinant of plant sap transport and plant–atmosphere exchange processes. Non-destructive imaging with neutrons shows large potential for unveiling the complex internal features of the venation network and the transport therein. However, it was only used for two-dimensional imaging without addressing flow dynamics and was still unsuccessful in accurate quantification of the amount of water. Quantitative neutron imaging was used to investigate, for the first time, the water distribution in veins and lamina, the three-dimensional venation architecture and sap flow dynamics in leaves. The latter was visualised using D2O as a contrast liquid. A high dynamic resolution was obtained by using cold neutrons and imaging relied on radiography (2D) as well as tomography (3D). The principle of the technique was shown for detached leaves, but can be applied to in vivo leaves as well. The venation network architecture and the water distribution in the veins and lamina unveiled clear differences between plant species. The leaf water content could be successfully quantified, though still included the contribution of the leaf dry matter. The flow measurements exposed the hierarchical structure of the water transport pathways, and an accurate quantification of the absolute amount of water uptake in the leaf was possible. Particular advantages of neutron imaging, as compared to X-ray imaging, were identified. Quantitative neutron imaging is a promising technique to investigate leaf water flow and transpiration in real time and has perspectives towards studies of plant response to environmental conditions and plant water stress.  相似文献   

15.
Water content and hydraulic conductivity, including transport within cells, over membranes, cell-to-cell, and long-distance xylem and phloem transport, are strongly affected by plant water stress. By being able to measure these transport processes non-invasely in the intact plant situation in relation to the plant (cell) water balance, it will be possible explicitly or implicitly to examine many aspects of plant function, plant performance, and stress responses. Nuclear magnetic resonance imaging (MRI) techniques are now available that allow studying plant hydraulics on different length scales within intact plants. The information within MRI images can be manipulated in such a way that cell compartment size, water membrane permeability, water cell-to-cell transport, and xylem and phloem flow hydraulics are obtained in addition to anatomical information. These techniques are non-destructive and non-invasive and can be used to study the dynamics of plant water relations and water transport, for example, as a function of environmental (stress) conditions. An overview of NMR and MRI methods to measure such information is presented and hardware solutions for minimal invasive intact plant MRI are discussed.  相似文献   

16.
Nuclear magnetic resonance imaging (MRI) is a non-destructive and non-invasive technique that can be used to acquire two- or even three-dimensional images of intact plants. The information within the images can be manipulated and used to study the dynamics of plant water relations and water transport in the stem, e.g., as a function of environmental (stress) conditions. Non-spatially resolved portable NMR is becoming available to study leaf water content and distribution of water in different (sub-cellular) compartments. These parameters directly relate to stomatal water conductance, CO2 uptake, and photosynthesis. MRI applied on plants is not a straight forward extension of the methods discussed for (bio)medical MRI. This educational review explains the basic physical principles of plant MRI, with a focus on the spatial resolution, factors that determine the spatial resolution, and its unique information for applications in plant water relations that directly relate to plant photosynthetic activity.  相似文献   

17.
于静洁  李亚飞 《生态学报》2018,38(22):7942-7949
稳定氢氧同位素技术被广泛运用于生态系统、特别是干旱区生态系统中植物水分来源的研究,其理论假设为"水分被植物根系吸收并向木质部运输过程中不发生氢氧同位素分馏"。生态系统中不同水源的氢氧同位素组成普遍存在显著差异,为从水源混合体中区分出各水源的贡献率提供了前提条件。但在实际应用过程中,诸多因素导致稳定氢氧同位素技术定量植物水分来源的结果具有不确定性。综合已有研究并加以分析,举证说明植物吸收水分相对于水源同位素变化的滞后性、水源同位素的季节性变化、蒸发作用和水源之间的混合作用对水源同位素的影响等导致植物水分来源定量结果不确定性的几个因素,以期为今后稳定氢氧同位素技术在植物水分来源领域的应用提供参考。  相似文献   

18.
Long-standing theory has predicted that plant defensive and nutritional traits contribute to the population dynamics of insect herbivores. To examine the role of plant variation in density dependence, I took a comparative approach by conducting density manipulation experiments with the specialist aphid, Aphis nerii, on 18 species of milkweed (Asclepias spp.). The strength of density dependence varied on the plant species. Variation in plant secondary compounds (cardenolides), trichomes, leaf carbon and nitrogen concentrations, and seed mass of the milkweed species predicted the R(max) of aphid populations, while specific leaf weight, carbon concentration, latex, water content, and trichome density were significant predictors of the strength of density dependence. Thus, plant traits that probably evolved for primary and defensive functions contribute to the ecological dynamics of herbivore populations.  相似文献   

19.
Although arid and semiarid regions are defined by low precipitation, the seasonal timing of temperature and precipitation can influence net primary production and plant functional type composition. The importance of precipitation seasonality is evident in semiarid areas of the western U.S., which comprise the Intermountain (IM) zone, a region that receives important winter precipitation and is dominated by woody plants and the Great Plains (GP), a region that receives primarily summer precipitation and is dominated by perennial grasses. Although these general relationships are well recognized, specific differences in water cycling between these regions have not been well characterized. We used a daily time step soil water simulation model and twenty sites from each region to analyze differences in soil water dynamics and ecosystem water balance. IM soil water patterns are characterized by storage of water during fall, winter, and spring resulting in relatively reliable available water during spring and early summer, particularly in deep soil layers. By contrast, GP soil water patterns are driven by pulse precipitation events during the warm season, resulting in fluctuating water availability in all soil layers. These contrasting patterns of soil water—storage versus pulse dynamics—explain important differences between the two regions. Notably, the storage dynamics of the IN sites increases water availability in deep soil layers, favoring the deeper rooted woody plants in that region, whereas the pulse dynamics of the Great Plains sites provide water primarily in surface layers, favoring the shallow-rooted grasses in that region. In addition, because water received when plants are either not active or only partially so is more vulnerable to evaporation and sublimation than water delivered during the growing season, IM ecosystems use a smaller fraction of precipitation for transpiration (47%) than GP ecosystems (49%). Recognizing the pulse-storage dichotomy in soil water regimes between the IM and GP regions may be useful for understanding the potential influence of climate changes on soil water patterns and resulting dominant plant functional groups in both regions.  相似文献   

20.
A comprehensive biogeochemical model, Wetland‐DNDC, was applied to analyze the carbon and hydrologic characteristics of forested wetland ecosystem at Minnesota (MN) and Florida (FL) sites. The model simulates the flows of carbon, energy, and water in forested wetlands. Modeled carbon dynamics depends on physiological plant factors, the size of plant pools, environmental factors, and the total amount and turnover rates of soil organic matter. The model realistically simulated water level fluctuation, forest production, carbon pools change, and CO2 and CH4 emission under natural variations in different environmental factors at two sites. Analyses were focused on parameters and inputs potentially cause the greatest uncertainty in calculated change in plant and soil C and water levels fluctuation and shows that it was important to obtain accurate input data for initial C content, climatic conditions, and allocation of net primary production to various forested wetland components. The magnitude of the forest responses was dependent not only on the rate of changes in environmental factors, but also on site‐specific conditions such as climate and soil. This paper explores the ability of using the biogeochemical process model Wetland‐DNDC to estimate the carbon and hydrologic dynamics of forested wetlands and shifts in these dynamics in response to changing environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号