首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Mutants of Chlorella sorokiniana selected for resistance to the methionine analogue ethionine took up ethionine at the same rate as did the wild type strain. Cells of two ethionine-resistant mutants produced severalfold higher levels of free methionine and cysteine than did wild type cells.  相似文献   

2.
Methionine overproduction by Saccharomycopsis lipolytica.   总被引:1,自引:0,他引:1       下载免费PDF全文
Six ethionine-resistant (Etr) regulatory mutants of Saccharomycopsis lipolytica Sl/1 overproducing methionine have been isolated. Five of them are also resistant to seleno-methionine. The activity of homocysteine synthase (O-acetyl-L-hormoserine-acetate lyase, adding hydrogen sulfide) is derepressed in these mutants and is not susceptible to the methionine-mediated repression. The pool of free methionine in Etr mutants is enhanced 1.5 to 18 times, and incorporation of 35S into methionine is 1.5 to 50 times higher than that in the wild strain. Neither accumulation of endogenous free methionine in Etr mutants nor the uptake of exogenous methionine is accompanied by an increase in the S-adenosylmethionine pool. This implies compartmentation of methionine metabolism in S. lipolytica.  相似文献   

3.
Incubation of cell-free extracts ofC. utilis and its ethionine-resistant mutants with methionine, aspartate and alanine, and with various acceptor oxo-acids showed the presence of several transamination activities (Glu-Asp, Ala-Glu, Met-Glu, Met-Ala, Ala-Asp, but not Met-Asp). The lack of utilization of methionine by mec mutants appears to be due to a transport lesion.  相似文献   

4.
l-Methionine-enriched cells production of an ethionine-resistant mutant of Candida boidinii no. 2201 was greatly improved by the control of pH and by feeding of methanol and other medium components during cultivation in a jar fermentor. Under the optimal conditions, 38.5 g (as dry weight)_of cells abd 282 mg of pool methionine (intracellular pool of free l-methionine) per l of culture broth were obtained after 11 d of cultivation.The culture conditions for production of l-methionine-enriched cells in continuous culture were investigated. With limited methanol in continuous cultivation, pool methionine productivity reached a maximum value of 1.14 mg·l−1·h−1 at a dilution rate of 0.05·h−1. During methanol-limited growth in continuous cultivation, the pool methionine content of the mutant was about 20–35% higher than that in batch cultivation.  相似文献   

5.
In a defined medium with added ethionine plus low methionine, phenylalanine, tryptophan, tyrosine, adenine, and additional methionine reversed inhibition of the enteric yeast Candida slooffii by ethionine. Isoleucine and 7-methylguanine restored half-maximal growth. Choline but not triethylcholine inhibited C. slooffii. 6-Mercaptopurine reversed ethionine inhibition and also synergistic inhibition by ethionine plus choline. Protection against ethionine by adenine plus aromatics was also evident with log-phase cells in the absence of methionine. Incorporation of ethionine-ethyl-1-(14)C by resting cells was partially inhibited by aromatic amino acids and methionine. Ethionine depressed incorporation of (3)H-phenylalanine but not of (3)H-adenine. Ethionine-resistant mutants were isolated which incorporated ethionine efficiently and degraded it to yet unidentified substances not including 5'-ethylthioadenosine. Ethionine-sensitive cells accumulated more S-adenosylethionine (SAE) than resistant mutants. Adenine was a good precursor of SAE. Radioactivity from ethionine-ethyl-1-(14)C was recovered from cell fractions of ethionine-sensitive cells with the following distribution: cold trichloroacetic acid-soluble > hot trichloroacetic acid-insoluble > lipids > deoxyribonucleic acid > ribonucleic acid. Total radioactivity recovered from ethionine-sensitive cells was twice as much as that from ethionine-resistant mutants.  相似文献   

6.
This communication describes the isolation and characterization of mutants of Rhizobium trifolii which can induce nitrogenase activity in defined liquid medium. Two procedures were used for the isolation of these mutants from R. trifolii strain DT-6: (1) following chemical mutagenesis, slow growin mutants were selected which were unable to utilize NH4+ as sole source of nitrogen; (2) as spontaneous mutants resistant to the glutamate analogue L-methionine-DL-sulfoximine.Mutants (DT-71, DT-125) isolated by these procedures induced nitrogenase activity in the free-living state, whereas the parent strain lacked this property. Induction of nitrogenase activity in these mutants occurred during the late exponential phase of growth when the rate of protein synthesis was decreasing. The addition of NH4+ to a medium containing glutamate as the nitrogen-source resulted in a 50–70% reduction (repression?) of nitrogenase activity; in contrast, the rate of protein synthesis or the rate of respiration was not influenced by exogenous NH4+.Biochemistry analysis showed that these mutants (strains DT-71 and DT-125) have defects in both nitrogen and carbon metabolism. The levels of glutamate synthase (both NADP+-and NAD+-dependent activities) and glutamate dehydrogenase (NAD+-dependent activity) were markedly lower. In addition, the mutants were found to have no detectable ribitol dehydrogenase or β-galactosidase activity. These findings are discussed in relation to a mechanism of regulation of symbiotic nitrogen fixation.  相似文献   

7.
While wild-type Escherichia coli K12 cannot grow with L-serine as carbon source, two types of mutants with altered methionine metabolism can. The first type, metJ mutants, in which the methionine biosynthetic enzymes are expressed constitutively, are able to grow with L-serine as carbon source. Furthermore, a plasmid carrying the metC gene confers ability to grow on L-serine. These observations suggest that in these mutants, L-serine deamination may be a result of a side-reaction of the metC gene product, cystathionine beta-lyase. The second type is exemplified by two newly isolated strains carrying mutations mapping between 89.6 and 90 min. These mutants use L-serine as carbon source, and also require methionine for growth with glucose at 37 degrees C and above. The phenotypes of the new mutants resemble those of both met and his constitutive mutants in some respects, but have been differentiated from both of them.  相似文献   

8.
Seven Tn5 induced mutants unable to use glutamate as sole carbon and nitrogen source were isolated from the effective Rhizobium leguminosarum bv. phaseoli strain P121-R. As indicated by restriction and hybridisation analysis, all the mutants arose from a single Tn5 insertion in the chromosome. The 14C-glutamate uptake rate of the mutants was 76 to 88% lower than that of strain P121-R. Inoculation of Phaseolus vulgaris cv. Labrador with these mutants significantly decreased shoot dry matter yield and the total nitrogen content respectively, as compared to inoculation with the parental strain P121-R. All the mutants formed nodules, however they were smaller, white to greenish and approximately 30% less numerous than those formed by strain P121-R. These observations suggest that glutamate transport and catabolism in R. leguminosarum bv. phaseoli P121-R may play an important role in the establishment of an effective symbiosis in field bean. None of the mutants isolated was an auxotroph. All mutants were unable to grow on aspartate suggesting that glutamate and aspartate, probably have the same transporter as indicated in Rhizobium meliloti and in Bacillus subtilis. All mutants readily used glutamine, proline, arginine as sole carbon and nitrogen source, but grew more slowly than the wild type strain. On the other hand, all the mutants were impaired in growth on histidine and -aminobutyrate as sole carbon and nitrogen source. As the catabolism of these amino acids occurs predominantly through glutamate, our results indicate that mutants are also impaired in their ability to use histidine and -aminobutyrate as a nitrogen source. Our results also suggest that other amino acids catabolized through the glutamate pathways may be an additional important carbon source for bacteroids in nodules.  相似文献   

9.
The methionine adenosyltransferase is repressed in Saccharomyces cerevisiae during growth in the presence of excess methionine. The relationship of this repression to the level of intracellular S-adenosylmethionine is discussed. In conjunction with these studies, an ethionine-resistant mutant has been investigated which has a low level of methionine adenosyltransferase under all conditions tested. The mechanism of ethionine resistance in the latter strain apparently depends on its inability to form large quantities of intracellular S-adenosylethionine. With respect to the methionine adenosyltransferase, there is no apparent interaction between ethionine-resistant and ethionine-sensitive alleles when both are present in the heterozygous diploid.  相似文献   

10.
Although glutamate is a key compound in nitrogen metabolism, little is known about the function or regulation of its two biosynthetic enzymes, glutamate dehydrogenase and glutamate synthase. To begin the characterization of glutamate formation in Salmonella typhimurium, we isolated mutants having altered glutamate dehydrogenase and glutamate synthase activities. Mutants which failed to grow on media with glucose as the carbon source and less than 1 mM (NH4)2SO4 as the nitrogen source (Asm) had about one-fourth the normal glutamate synthase activity and one-half the glutamine synthetase activity. The asm mutations also prevented growth with alanine, arginine, or proline as nitrogen sources and conferred resistance to methionine sulfoximine. When a mutation (gdh-51) causing the loss of glutamate dehydrogenase activity was transferred into a strain with an asm-102 mutation, the resulting asm-102 gdh-51 mutant had a partial requirement for glutamate. A strain isolated as a complete glutamate auxotroph had a third mutation, in addition to the asm-102 gdh-51 lesions, that further decreased the glutamate synthase activities to 1/20 the normal level. Both the asm-102 and gdh-51 mutations were located on the S. typhimurium linkage map at sites distinct from those found for mutations causing similar phenotypes in Klebsiella aerogenes and Escherichia coli.  相似文献   

11.
Experiments document the ability of two species of autotrophic methanogens to assimilate and utilize organic substrates as the nutrient sulfur or nitrogen source and as a carbon source during growth on H2-CO2. Methanobacterium thermoautotrophicum strain ΔH and the mesophilic species Methanobacterium sp. strain Ivanov grew with glutamine as the nitrogen source or cysteine as the sulfur source. M. thermoautotrophicum also utilized urea as the nitrogen source and as a carbon precursor for methane and cell synthesis. Methanobacterium sp. strain Ivanov grew with methionine as the sulfur source. The growth rate of two different Methanobacterium species was lower on an organic N or S source than on ammonium or sulfide. 35S and 14C tracer studies demonstrated that amino acid or urea assimilation correlated with time and amount of growth. The rate of [35S]cysteine incorporation was similar in strain ΔH (34 nmol h−1 mg of cells−1) and strain Ivanov (23 nmol h−1 mg of cells−1). However, the rate of [14C]acetate incorporation was dramatically different (17 versus 208 nmol h−1 mg of cells−1 in strains ΔH and Ivanov, respectively). [14C]acetate accounted for 1.3 and 21.2% of the total cell carbon synthesized by strains ΔH and Ivanov, respectively. Amino acids and urea were mainly assimilated into the cell protein fraction, but accounted for less than 2.0% of the total cell carbon synthesized. The data suggest that a biochemical-genetic approach to understanding cell carbon synthesis in methanogens is feasible; mutants that are auxotrophic for either acetate, glutamine, cysteine, or methionine are suggested as future targets for genetic studies.  相似文献   

12.
The effect of media supplements on total and polyglutamylfolate concentrations has been examined in Neurospora crassa wild type (FGSC 853), an ethionine-resistant mutant (FGSC 1212), and a methionine auxotroph (FGSC 1330) which lacks folylpolyglutamate synthetase. When the culture medium contained 1 mm glycine, folate concentrations in the wild type were increased by over 90% and more p-[3H]aminobenzoate was incorporated into folates. Growth in l-methionine-supplemented media (1–5 mm) decreased folate levels and labeling in all three strains. In the wild type, this effect of l-methionine was reversed on transfer to unsupplemented media but p-[3H]aminobenzoate pulse-chase experiments suggested that exogenous methionine did not increase the turnover of labeled folates. At 1 mm, d-methionine did not affect polyglutamylfolate labeling but l-methionine reduced 3H incorporation by 65% in the wild type. Ion-exchange chromatography showed that p-[3H]aminobenzoate was incorporated in formyl- and methyltetrahydrofolates which in the wild type, were principally hexaglutamyl derivatives. Glycine-supplemented growth yielded labeled folates that were 24% heptaglutamates but these and pentaglutamates were lacking when l-methionine was supplied. The specific activity of GTP cyclohydrolase was not significantly affected by culture in l-methionine-containing media. Dialysis and gel filtration both lowered enzyme activities and product formation was not changed when up to 10 μmol of l-methionine was added to the reaction system. The data suggest that methionine or its metabolic products exerts some control over folate production which is distinct from the established inhibition of methylenetetrahydrofolate reductase by AdoMet.  相似文献   

13.
Summary Diploid alfalfa (HG2), capable of plant regeneration from tissue culture, was used to select variant cell lines resistant to growth inhibition due to ethionine (an analog of methionine). Approximately 107 suspension-cultured cells were mutagenized with methane sulfonic acid ethylester and then plated in solid media containing ethionine. Callus colonies formed on media with 0.02 mM ethionine. Of the 124 cell lines recovered, 91 regenerated plants. After six months growth on media without ethionine, 15 of 110 cell lines of callus grew significantly better than HG2 on 1 mM ethionine. Several ethionine-resistant callus cultures were also resistant to growth inhibition due to the addition of lysine + threonine to the media. High concentrations, relative to unselected HG2 callus, of methionine, cysteine, cystathionine, and glutathione were found in some, but not all, ethionine-resistant callus cultures. Cell line R32, which had a ca. tenfold increase in soluble methionine, had a 43% increase in total free amino acids and a 40% increase in amino acids in protein as compared to unselected HG2 callus. Relative amounts of each amino acid in protein were the same in both.Abbreviation LT lysine + threonine in equimolar concentration  相似文献   

14.
Spontaneous ethylenediamine-resistant mutants of Azospirillum brasilense were selected on the basis of their excretion of NH4+. Two mutants exhibited no repression of their nitrogenase enzyme systems in the presence of high (20 mM) concentrations of NH4+. The nitrogenase activities of these mutants on nitrogen-free minimal medium were two to three times higher than the nitrogenase activity of the wild type. The mutants excreted substantial amounts of ammonia when they were grown either under oxygen-limiting conditions (1 kPa of O2) or aerobically on nitrate or glutamate. The mutants grew well on glutamate as a sole nitrogen source but only poorly on NH4Cl. Both mutants failed to incorporate [14C]methylamine. We demonstrated that nitrite ammonification occurs in the mutants. Wild-type A. brasilense, as well as the mutants, became established in the rhizospheres of axenically grown wheat plants at levels of > 107 cells per g of root. The rhizosphere acetylene reduction activity was highest in the preparations containing the mutants. When plants were grown on a nitrogen-free nutritional medium, both mutants were responsible for significant increases in root and shoot dry matter compared with wild-type-treated plants or with noninoculated controls. Total plant nitrogen accumulation increased as well. When they were exposed to a 15N2-enriched atmosphere, both A. brasilense mutants incorporated significantly higher amounts of 15N inside root and shoot material than the wild type did. The results of our nitrogen balance and 15N enrichment studies indicated that NH4+-excreting A. brasilense strains potentially support the nitrogen supply of the host plants.  相似文献   

15.
16.
Precursors of the pyrimidine moiety of thiamine   总被引:13,自引:2,他引:11  
1. A method was devised for obtaining the pyrimidine moiety of thiamine in a pure form after its excretion into the medium by de-repressed washed-cell suspensions of mutants of Salmonella typhimurium LT2. 2. By using amino acid-requiring mutants, this excretion of pyrimidine moiety was shown to be dependent on the presence of both methionine and glycine. 3. In the presence of either [Me-14C]methionine or [G-14C]methionine, methionine-requiring mutants did not incorporate radioactivity into the pyrimidine moiety. 4. In contrast, both [1-14C]glycine and [2-14C]glycine were incorporated into the pyrimidine moiety excreted by glycine-requiring mutants, and this occurred with little or no dilution of specific radioactivity. 5. The possible requirement for methionine as a cofactor and the significance of the incorporation of both carbon atoms of glycine are discussed.  相似文献   

17.
Two auxotrophic mutants (SM16 and SM51) of Salmonella typhimurium, which for aerobic growth, with hexoses as carbon source, required lysine and methionine (SM51 required also nicotinic acid), were isolated and characterized. The requirement for the amino acids disappeared in anaerobiosis. Neither lipoate nor 4-hydroxybenzoate was effective in supporting aerobic growth of the mutants. The lysine and methionine requirement for aerobic growth was due to the absence in the mutants of the enzymatic activities of the alpha-ketoglutarate dehydrogenase complex. The mutants could not use succinate as carbon source even after enrichment of the growth medium with acid-hydrolyzed casein and yeast extract. No phosphoenolpyruvate carboxykinase activity was found in the mutants, a phenomenon which explained their inability to use succinate. By interrupted conjugation and by transduction experiments, the positions of the three affected loci, pck, suc, and Nic, were located at approximately 17 to 19 min of the S. typhimurium chromosome; they were found to be closely linked. From different criteria, it appears as if the genetic lesions present in both mutants are due to deletion of a small chromosome fragment.  相似文献   

18.
A Rhizobium strain isolated from stem nodules of the legume Sesbania rostrata was shown to grow on atmospheric nitrogen (N2) as the sole nitrogen source. Non-N2-fixing mutants isolated directly on agar plates formed nodules that did not fix N2 when inoculated into the host plant.  相似文献   

19.
An ethionine-resistant mutant of Saccharomyces cerevisiae has been investigated whose mutation (etr2) confers resistance to the heterozygous diploid also containing the sensitive allele, ets. The mutation is apparently specific for reversal of ethionine inhibition. The principal difference between the sensitive ets strain and the mutant was the latter's inability to concentrate large intracellular quantities of adenosylethionine. Reduced incorporation of ethyl groups or ethionine in other cellular fractions of the mutant was also detected. The data show that the mutant has not lost the ability to form adenosylethionine. It is suggested that the mutant has an increased ability to hydrolyze this sulfonium compound after it has been synthesized. It is possible that some of the ethionine is detoxified before it can participate in protein or adenosylethionine synthesis. No mutant alteration in accumulation of ethionine from the medium was detected. In the presence of ethionine, the parental strain accumulated 25 times more adenosylethionine than did the mutant. However, with methionine, only twice as much adenosylmethionine was accumulated by the parental strain as by the mutant.  相似文献   

20.
The ability to accumulate S-adenosylmethionine (SAM) of 572 yeast strains isolated from environmental sources were surveyed. An S-adenosylmethionine enriching strain S42-12, identified asCandida sp., was chose to develop a SAM-accumulating mutant successfully. The final SAM-accumulating mutant strain YQ-5 was isolated by UV radiation or by NTG treatment using ethionine selection and nystatin selection method. The mutant strain YQ-5 accumulated 112.1 mg per gram biomass, was 3.14-fold higher than the original strain S42-12. When cultivated in the optimal medium with a favourable fermentation conditions, SAM content of the mutant strain reached at 1740 mg L?1. Trend of SAM and ergosterol contents and methionine adenosyltransferase activity of SAM-accumulating mutants during fermentation were analysed. The results suggested that one of the reasons why the mutants accumulated SAM in significantly high amounts may be the lower consumption of SAM for ergosterol biosynthesis, other than improvement of methionine adenosyltransferase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号