首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excised rice (Oryza sativa L. cv. Ratna) leaves were used to compare the changes in the levels of various biochemical intermediates and enzyme activities during senescence in turgid and water-stressed conditions. Chlorophyll, total protein and soluble protein content decreased but α-amino nitrogen content increased during the senescence of turgid leaves. In the leaves subjected to water stress, these changes were accelerated, the acceleration being greater with higher degree of water stress. Starch, soluble sugars, total carbohydrates and non-reducing sugar content decreased during senescence of turgid leaves. Water stress accelerated the changes in the levels of starch and non-reducing sugar, but the changes in the levels of soluble sugars and total carbohydrates were retarded. Reducing sugar content increased at first and then decreased in the turgid leaves, and water stress accelerated the change. The decline in the catalase activity and the increase in the peroxidase activity with time was faster in the water-stressed leaves than in the turgid leaves. Acid inorganic pyrophosphatase activity increased, but alkaline inorganic pyrophosphatase activity decreased during the senescence of turgid leaves, and such changes were accelerated by water stress. The results suggest that water stress does not accelerate all the processes connected with leaf senescence.  相似文献   

2.
The knowledge about the physiological function of plant nucleases is scarce besides that they have been involved in nucleic acid degradation related with programmed cell death processes. Cotyledons provide a suitable system to investigate this process and the changes associated to nutrient mobilization. Nuclease activities have been determined in French bean seedlings. The total nuclease activity in French bean cotyledons is lower than in embryonic axes; however, several nucleases were detected by in-gel nuclease activity assays with extracts from cotyledons of French bean and ssDNA as substrate. The nuclease activities induced during cotyledon senescence showed higher activity at neutral than at acidic pH. Five different nuclease genes belonging to S1/P1 family have been identified in French bean genome database named PVN1 to PVN5. Their relative expression in cotyledons has been determined from the start of imbibition to senescence, and three genes from this family showed expression in cotyledons. PVN1 was expressed during early stages of seedlings development, whereas PVN4 and PVN5 were expressed during cotyledons senescence. The removal of epicotyl in French bean seedlings resulted in a decrease in the activity and in the expression of the genes associated with the cotyledons senescence process, i.e. PVN4 and PVN5. At the same time, the mobilization of reserves in those cotyledons was slowed down. In the same way, the deficit in phosphate and nitrate during seedlings development led to an acceleration of induction of these genes at the same time that reserves were utilized early on the time. Therefore, the induction of PVN4 and PVN5, the two S1 nuclease genes involved in the process of cotyledon senescence, is related to nutrient mobilization, supporting a possible role for nucleic acids in nutrient recycling during cotyledon senescence.  相似文献   

3.
Acid inorganic pyrophosphatase on the one hand, and Mg2+-dependent alkaline inorganic pyrophosphatase and Zn2+-dependent acid inorganic pyrophosphatase on the other hand showed opposite trends in their activities in rice (Oryza sativa L. cv. Ratna) seedlings grown in dark and sun. The opposite trends in their activities were also noted in rice seedlings grown from gamma-irradiated seeds and in detached rice leaves floated on water in dark. The ratios of Mg2+ dependent alkaline inorganic pyrophosphatase/acid inorganic pyrophosphatase and Zn2+-dependent acid inorganic pyrophosphatase/acid inorganic pyrophosphatase changed significantly in response to the above physical treatments, but the ratio of Mg2+ dependent alkaline inorganic pyrophosphatase/Zn2+ dependent acid inorganic pyrophosphatase remained relatively stable. The conclusion is that Zn2+-dependent acid inorganic pyrophosphatase activity is the same as that of Mg2+-dependent alkaline inorganic pyrophosphatase and is different from that of acid inorganic pyrophosphatase, which requires no metal ion for activity. The acid and alkaline inorganic pyrophosphatase activities are due to separate enzyme proteins.  相似文献   

4.
Some metabolic changes of senescing turgid and water-stressedexcised rice leaves were compared under incubation in the dark.The decrease of the chlorophyll and protein level and the increaseof the -amino nitrogen were faster in the water-stressed leavesthan in the turgid leaves during the first two or three daysof incubation. However, the changes in levels of chlorophyll,protein and a-amino nitrogen were later retarded by water stress.The rate of decline in soluble sugar was more rapid in the turgidthan in the water-stressed leaves. In turgid leaves, there wasa slight but significant increase in the proline content inthe first day of incubation; subsequently, proline accumulatedrelatively rapidly, yet at a slower rate than in the stressedleaves. The activity of acid inorganic pyrophosphatase increased,but that of alkaline inorganic pyrophosphatase decreased duringthe senescence of both turgid and water-stressed leaves. Theenzyme activities are, therefore, due to two separate enzymeproteins. Water stress enhanced the increase of acid inorganicpyrophosphatase activity only during the first two days; itretarded the decrease of alkaline inorganic pyrophosphataseactivity at later stage of incubation. It is concluded that water stress does not accelerate all themetabolic changes associated with the senescence of excisedleaves. (Received January 24, 1981; Accepted March 27, 1981)  相似文献   

5.
暗中培养的绿豆幼苗子叶在萌发后3—4天时,外观出现衰老征状,6天后子叶凋落。随子叶日龄的增加,子叶的呼吸强度一直下降,呼吸商始终小于1。当外加L—苹果酸、a—酮戊二酸、琥珀酸和NADH为底物测定离体线粒体氧化活性时,衰老子叶的线粒体对上述四种底物的氧化活性有不同程度的增加;抗氰呼吸也有所升高。子叶衰老时,线粒体的ADP/O和呼吸控制(RC值均降低);线粒体ATPase水解ATP的活性升高。衰老绿豆子叶线粒体氧化磷酸化偶联效率的降低和ATPase水解活性的增强是与线粒体结构改变相联系的一种功能变化,它导致能量亏缺,并进一步加速了衰老的恶化进程。  相似文献   

6.
Inorganic pyrophosphatase, peroxidase, and polyphenoloxidase activities were studied as the function of leaf insertion level in eight monocotyledonous and eight dicotyledonous species. Alkaline inorganic pyrophosphatase shows a declining activity toward the end of senescence whereas no regular drift in either peroxidase or polyphenoloxidase activities was noticed during senescence of attached leaves. In the primary leaves of rice, peroxidase and polyphenoloxidase activities were high in the senescent leaves and there exists a correlation between chlorophyll content and peroxidase activity though not with polyphenoloxidase activity. Upon detachment leaves exhibit increasing peroxidase and polyphenoloxidase activities with time. The distribution of the enzyme activities during senescence of attached leaves is suggested to be species-specific, and an increase in peroxidase and polyphenoloxidase activities cannot be taken as an indicator of leaf senescence.  相似文献   

7.
Several characteristics of mitochondrial respiration and energy status have been studied during growth and senescence of mung bean ( Phaseolus radiatus L.) cotyledons. The results showed that mitochondrial oxygen consumption, respiratory control, ADP:O ratios, and energy charge changed in the cotyledons during germination and growth of the seedlings. The respiration rate of intact cotyledons approximately reflected the trend of the oxidative activities of the isolated mitochondria. An increase was observed in both whole cotyledon respiration and mitochondrial oxygen uptake at the onset of senescence of mung bean cotyledons (day 3 after germination), which thereafter declined gradually. The capacity and activity of the alternative pathway increased markedly in mitochondria isolated from senescent cotyledons. After the onset of senescence, the mung bean cotyledon mitochondria exhibited a decrease both in the respiratory control ratios and ADP:O ratios, and the cotyledons exhibited a gradual decline in energy charge. All these results showed an irreversible deterioration of energy conservation in mung bean cotyledons. The role(s) of the alternative pathway in senescent mung bean cotyledons is discussed.  相似文献   

8.
The role of cotyledons in hypocotyl elongation caused by gibberellicacid was studied using young seedlings of lettuce, Lactuca saliva,var. ‘Grand Rapids’. Removal of cotyledons fromintact seedlings resulted in a depression of hypocotyl elongationcaused by gibberellic acid. Gibberellic acid-induced hypocotylelongation in decotylized seedlings, was however, substantiallyenhanced by incubating the seedlings together with excised cotyledons.The exudate from excised cotyledons also enhanced the effectof gibberellic acid on hypocotyl elongation in decotylized seedlings.This active principle (named the cotyledon factor) in the cotyledonexudate was stable against heating at 100?C for 15 min, permeatedthe dialysis membrane, and was extractable with ethyl acetate.Biological activity of the cotyledon factor was not replacedby indole-3-acetic acid, kinetin, cyclic AMP, vitamins, sucroseor inorganic nutrients. The biological significance of the cotyledonfactor is discussed in relation to the action of gibberellicacid. (Received February 14, 1973; )  相似文献   

9.
Excised rice leaves (Oryza sativa L. cv. Ratna) werefloated on a 10–3M solution of benzirnidazole under dark or continuous red light. Compared to the water control a degradation of chlorophyll, protein, RNA, DNA and a decrease in the activity of alkaline inorganic pyrophosphatase was delayed at the same time as an increase of α-amino nitrogen and the activity of acid inorganic pyrophosphatase occurred, Benzimidazole was more effective under red light than in the dark in retarding senescence. The possible role of inorganic pyrophosphatases is discussed with respect to biosynthesis during leaf senescence.  相似文献   

10.
Cotyledon opening is a key morphological change that occurs in seedlings during de-etiolation. Brassinosteroids (BRs) inhibit the opening of cotyledons in darkness while light promotes cotyledon opening. The molecular regulation of the interplay between light and BR to regulate cotyledon opening is not well understood. Here, we show the B-box protein BBX32 negatively regulates light signaling and promotes BR signaling to inhibit cotyledon opening in Arabidopsis (Arabidopsis thaliana). BBX32 is highly expressed in the cotyledons of seedlings during de-etiolation. bbx32 and 35S:BBX32 seedlings exhibit enhanced and reduced cotyledon opening, respectively, in response to both light and brassinazole treatment in dark, suggesting that BBX32 mediates cotyledon opening through both light and BR signaling pathways. BBX32 expression is induced by exogenous BR and is upregulated in bzr1-1D (BRASSINAZOLE RESISTANT1-1D). Our in vitro and in vivo interaction studies suggest that BBX32 physically interacts with BZR1. Further, we found that PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) interacts with BBX32 and promotes BR-mediated cotyledon closure. BBX32, BZR1, and PIF3 regulate the expression of common target genes that modulate the opening and closing of cotyledons. Our work suggests BBX32 integrates light and BR signals to regulate cotyledon opening during de-etiolation.  相似文献   

11.
Changes occurring during aging and senescence of leaves of a submerged aquatic angiosperm ( Potamogeton pectinatus L.) were studied. Total chlorophyll and chlorophylls a and b were maximal in mature, and minimal in old leaves. The chlorophyll a to b ratio was highest in mature leaves. During senescence, the chlorophyll content and the ratio of chlorophyll a to b decreased. The content of DNA, RNA, protein and dry weight, and the activity of alkaline pyrophosphatase decreased while free amino acids, the activity of protease, RNase and acid pyrophosphatase, and the ratio of acid to alkaline pyrophosphatase activity increased during aging and senescence. Kinetin (0.23 m M ) deferred leaf senescence by delaying the loss of chlorophyll, protein, nucleic acids and dry weight, and reducing the rise in free amino acids, the activity of protease, RNase and acid pyrophosphatase and the ratio of acid to alkaline pyrophosphatase activity; while both 0.69 m M ethrel and 0.075 m M ABA hastened senescence. Kinetin pretreatment for an optimum period (12 h) followed by ethrel or ABA treatment partially erased the senescence-promoting effect of the latter. But treatments in a reverse order markedly reduced the delaying effect of kinetin on senescence.  相似文献   

12.
The interaction of senescence and phosphorus deficiency in determining phosphatase activities ofLemna minor has been examined in axenic cultures. Acid phosphatase activity increased in phosphorus deficiency, alkaline pyrophosphatase activity decreased during senescence and this decrease was exaggerated by phosphorus deficiency. The results are discussed in relation to possible functional significance of the enzyme activities.  相似文献   

13.
Cotyledons of light-grown soybean (Glycine max L. var Wayne) seedlings were used as a model system to study the possibility that aging requires qualitative changes in protein synthesis. Cotyledons reached a final stage of senescence and then abscised about 22 days after imbibition. Cotyledon senescence was reversed at 20 days after germination by epicotyl removal. Thereafter, the cotyledons regained much of the chlorophyll, RNA, protein, and polyribosomes lost during aging.

Total poly(A)mRNA was extracted from 4-, 12-, 20-day-old, and rejuvenated cotyledons and translated in a wheat germ system. Comparison of translation products on two-dimensional O'Farrell gels showed that many translation products increased in quantity during aging, while roughly half as many decreased. Rejuvenation returned the translation products to approximately 4-day-old levels in roughly half of those products which were diminished with age. Conversely, almost one-third of the products which had increased with age decreased with rejuvenation. None of the translation products were totally lost nor were newly synthesized products detected during aging. Therefore, aging in this system probably does not involve complete gene repression or depression. The observation that epicotyl removal causes a reversal in the levels of various proteins synthesized in vitro was corroborated by similar observations following in vivo labeling of cotyledon sections and analysis by SDS-polyacrylamide gel electrophoresis and fluorography. Densitometric scans of fluorograms revealed a gradual shift in profiles of both in vitro and in vivo translation products during aging. Rejuvenated cotyledon proteins had a profile resembling that of 4-day-old cotyledons. The overall level of [35S]methionine incorporation into protein in vivo declined gradually during aging but was restored to 4-day-old levels within 2 days after epicotyl removal.

  相似文献   

14.
Changes in 7 antioxidative enzymes in naturally senescent cotyledons of cucumber ( Cucumis sativus ) were investigated. The activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (EC 1.11.1.6), dehydroascorbate reductase (EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2) gradually decreased during the progression of senescence, while those of ascorbate peroxidase (APX; EC 1.11.1.11) and guaiacol peroxidase (GPX; EC 1.11.1.7) gradually increased. The activity of monodehydroascorbate reductase (MDAR; EC 1.6.5.4) was not significantly changed. Western blot analysis showed that the protein level of mitochondrial SOD gradually declined. The protein level of catalase transiently decreased and then increased in the later stages of senescence, despite the decrease in its activity. The overall behavior was markedly different from that found in cotyledons of artificially senescing seedlings transferred into darkness; the activities of SOD, catalase, APX, GPX and GR gradually increased.  相似文献   

15.
Darkness mediates different senescence-related responses depending on the targeting of dark treatment (whole plants or individual leaves) and on the organs that perceive the signal (leaves or cotyledons). As no data are available on the potential role of darkness to promote senescence when applied to individual cotyledons, we have investigated how darkness affects the progression of senescence in either a single or both individually darkened cotyledons of young 10-day-old Cucurbita pepo (zucchini) seedlings. Strong acceleration of senescence was observed when both cotyledons were darkened as judged by the damage in their anatomical structure, deterioration of chloroplast ultrastructure in parallel with decreased photosynthetic rate and photochemical quantum efficiency of PSII. In addition, the endogenous levels of cytokinins (CKs) and IAA were strongly reduced. In a single individually darkened cotyledon, the structure and function of the photosynthetic apparatus as well as the contents of endogenous CKs and IAA were much less affected by darkness, thus suggesting inhibitory effect of the illuminated cotyledon on the senescence of the darkened one. Apparently, the effect of darkness to accelerate/delay senescence in a single darkened cotyledon depends on the light status of the other cotyledon from the pair. The close positive correlation between CK content and the activity of CK oxidase/dehydrogenase (CKX; EC 1.4.3.18/1.5.99.12) suggested that CKX was essentially involved in the mechanisms of downregulation of endogenous CK levels. Our results indicated that CKX-regulated CK signaling could be a possible regulatory mechanism controlling senescence in individually darkened cotyledons.  相似文献   

16.
Alkaline phosphatase prepared from mammalian cell cultures was found to have alkaline inorganic pyrophosphatase activity. Both of these activities appear to be associated with a single protein, as demonstrated by: (1) concomitant purification of alkaline phosphatase and alkaline inorganic pyrophosphatase; (2) proportional precipitation of alkaline phosphatase and inorganic pyrophosphatase activities by titrating constant amounts of an enzyme preparation with increasing concentration of antibody; (3) immune electrophoresis, which showed that precipitin bands that have alkaline phosphatase activity also have pyrophosphatase activity; (4) inhibition of pyrophosphatase activity by cysteine, an inhibitor of alkaline phosphatase activity; (5) similar subcellular localization of the two enzyme activities as demonstrated by histochemical methods; (6) hormonal and substrate induction of alkaline phosphatase activity in mammalian cell cultures, which produced a nearly parallel rise in inorganic pyrophosphatase activity.  相似文献   

17.
Higher amylase activity in cotyledons of kinetin treated salt stressed (75 mM NaCl) chickpea (Cicer arietinum L. cv. PBG-1) seedlings, as compared to salt stressed seedlings was observed during a growth period of 7 d. The activities of acid and alkaline invertases were maximum in shoots and minimum in cotyledons under all conditions. The reduced shoot invertase activities under salt stress were enhanced by kinetin with a simultaneous increase in reducing sugar content. Kinetin increased the activities of sucrose synthase (SS) and sucrose phosphate synthase (SPS) in both the cotyledons and shoots of stressed seedlings. Kinetin appears to increase the turnover of sucrose in the shoots of stressed seedlings.  相似文献   

18.
Cytokinin (CK) levels in cotyledons of Cucurbita pepo L. (zucchini) were investigated through the processes of post-germination, greening, natural senescence and subsequent rejuvenation. The concentrations of the physiologically active CK bases, ribosides and nucleotides, as well as the cis -isomers of zeatin derivatives, decreased between the first and fifth weeks of cultivation under controlled light conditions. At the same time, the levels of storage CK O -glucosides and physiologically inactive CK 7- and 9-glucosides increased with senescence. With plant decapitation and subsequent cotyledon rejuvenation, not only the chlorophyll content but also the levels of physiologically active CKs, nucleotides and cis -zeatin derivatives increased. The levels of O -glucosides, however, decreased. When 1-week-old seedlings were transferred to the dark, there was a progressive reduction in cotyledon chlorophyll content, deterioration of chloroplast ultrastructure and a decrease in physiologically active CKs and their nucleotides. In contrast with natural senescence, the storage CK O -glucosides decreased under dark conditions, suggesting different metabolic regulation of endogenous CK levels during natural and dark-induced senescence of zucchini cotyledons. The chlorophyll loss of dark-treated cotyledons could be partially reversed, even after 5 days, with return to light conditions. During this recovery, physiologically active CKs and their nucleotides again increased, whereas the storage CK O -glucosides and cis -zeatins decreased. The present results suggest that dark-induced destruction and subsequent restoration of chloroplasts during light shifts are controlled by changes in the levels of physiologically active CKs and their nucleotides.  相似文献   

19.
Jasmonic acid methyl ester (JAMe) has been recently shown to play a crucial role in many physiological processes. In this paper, we focused on cotyledon senescence in Ipomoea nil and revealed that JAMe and darkness are the main factors stimulating the process examined. What is more, we showed that mefenamic acid (a jasmonate biosynthesis inhibitor) reverses the stimulatory effect of darkness on senescence. In plants growing under dark conditions, stimulation of JASMONIC ACID CARBOXYL METHYLTRANSFERASE (InJMT) expression and, consequently, an increase in JAMe content, have been observed. In turn, the level of jasmonic acid (JA) gradually decreased. Moreover, dark-grown seedlings demonstrated a lower PSII functional activity and a reduced chlorophyll content and autofluorescence. All of these data suggest that JAMe is a signal molecule controlling the senescence of cotyledons in I. nil.  相似文献   

20.
Enhanced amylase activity was observed during a 7-day-growth period in the cotyledons of PEG imposed water stressed chickpea seedlings grown in the presence of GA3 and kinetin, when compared with stressed seedlings. During the first 5 days of seedling growth, the seedlings growing under water deficit conditions as well as those growing in the presence of PGRs had a higher amylase activity in shoots than that of control seedlings. Neither GA3 nor kinetin increased the amylase activity of roots whereas IAA reduced root amylase activity. Activity of acid and alkaline invertases was maximum in shoots and at a minimum in cotyledons. Compared with alkaline invertase, acid invertase activity was higher in all the tissues. The reduced acid and alkaline invertase activities in shoots of stressed seedlings were enhanced by GA3 and kinetin. Roots of stressed seedlings had higher alkaline invertase activity and GA3 and IAA helped in bringing the level near to those in the controls. GA3 and kinetin increased the sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities in cotyledons of stressed seedlings, whereas they brought the elevated level of SPS of stressed roots to near normal level. The higher level of reducing sugars in the shoots of GA3 and kinetin treated stressed seedlings could be due to the high acid invertase activity observed in the shoots, and the high level of bound fructose in the cotyledons of stressed seedlings could be due to the high activity of SPS in this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号