首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two specialized C. elegans distal tip cells (DTCs) provide an in vivo model system for the study of developmentally regulated cell migration. We identified cacn-1/cactin, a well-conserved, novel regulator of cell migration in a genome-wide RNAi screen for regulators of DTC migration. RNAi depletion experiments and analysis of the hypomorphic allele cacn-1(tm3126) indicate that CACN-1 is required during DTC migration for proper pathfinding and for cessation of DTC migration at the end of larval morphogenesis. Strong expression of CACN-1 in the DTCs, and data from cell-specific RNAi depletion experiments, suggest that CACN-1 is required cell-autonomously to control DTC migration. Importantly, genetic interaction data with Rac GTPase activators and effectors suggest that CACN-1 acts specifically to inhibit the mig-2/Rac pathway, and in parallel to ced-10/Rac, to control DTC pathfinding.  相似文献   

2.
We demonstrate here that the transient receptor potential melastatin subfamily channel, TRPM4, controls migration of bone marrow-derived mast cells (BMMCs), triggered by dinitrophenylated human serum albumin (DNP-HSA) or stem cell factor (SCF). Wild-type BMMCs migrate after stimulation with DNP-HSA or SCF whereas both stimuli do not induce migration in BMMCs derived from TRPM4 knockout mice (trpm4?/?). Mast cell migration is a Ca2+-dependent process, and TRPM4 likely controls this process by setting the intracellular Ca2+ level upon cell stimulation. Cell migration depends on filamentous actin (F-actin) rearrangement, since pretreatment with cytochalasin B, an inhibitor of F-actin formation, prevented both DNP-HSA- and SCF-induced migration in wild-type BMMC. Immunocytochemical experiments using fluorescence-conjugated phalloidin demonstrate a reduced level of F-actin formation in DNP-HSA-stimulated BMMCs from trpm4?/? mice. Thus, our results suggest that TRPM4 is critically involved in migration of BMMCs by regulation of Ca2+-dependent actin cytoskeleton rearrangements.  相似文献   

3.
Previous studies have demonstrated that the cell surface receptor Slamf1 (CD150) is requisite for optimal NADPH-oxidase (Nox2) dependent reactive oxygen species (ROS) production by phagocytes in response to Gram- bacteria. By contrast, Slamf8 (CD353) is a negative regulator of ROS in response to Gram+ and Gram- bacteria. Employing in vivo migration after skin sensitization, induction of peritonitis, and repopulation of the small intestine demonstrates that in vivo migration of Slamf1-/- dendritic cells and macrophages is reduced, as compared to wt mice. By contrast, in vivo migration of Slamf8-/- dendritic cells, macrophages and neutrophils is accelerated. These opposing effects of Slamf1 and Slamf8 are cell-intrinsic as judged by in vitro migration in transwell chambers in response to CCL19, CCL21 or CSF-1. Importantly, inhibiting ROS production of Slamf8-/- macrophages by diphenyleneiodonium chloride blocks this in vitro migration. We conclude that Slamf1 and Slamf8 govern ROS–dependent innate immune responses of myeloid cells, thus modulating migration of these cells during inflammation in an opposing manner.  相似文献   

4.

Background and Aims

Several reports described the migration of human mesenchymal stromal cells (MSCs) towards tumor-released factors. Autocrine motility factor (AMF) is produced by several tumors including hepatocellular carcinoma (HCC). The aim of this study was to analyze AMF involvement on MSC migration towards human HCC.

Methods

Production of AMF by HCC tumors was evaluated by western analysis. The effects of AMF on MSCs from different sources (bone marrow, adipose tissue and perivascular cells from umbilical cord) were analyzed using in vitro migration assay; metalloproteinase 2 (MMP2) activity and expression of critical genes were studied by zymography and qRT-PCR, respectively. To assess AMF involvement on the in vivo MSC migration, noninvasive fluorescence imaging was performed. To test the effect of AMF-primed MSCs on tumor development, in vitro proliferation and spheroids growth and in vivo tumor volume were evaluated.

Results

AMF produced by HCC was found to induce migration of different MSCs in vitro and to enhance their MMP2 activity. Stimulation of MSCs with recombinant AMF (rAMF) also induced the in vitro adhesion to endothelial cells in coincidence with changes in the expression levels of MMP3, AMF receptor, caveolin-1, and -2 and GDI-2. Importantly, stimulation of MSCs with rAMF increased the in vivo migration of MSCs towards experimental HCC tumors. AMF-priming of MSCs did not induce a pro-tumorigenic effect on HCC cells neither in vivo nor in vitro.

Conclusion

AMF plays a role in MSC recruitment towards HCC. However, its ability to increase MSC migration to HCC for therapeutic purposes merits further evaluation.  相似文献   

5.
6.
《Process Biochemistry》2010,45(12):1888-1893
The lipase of Rhizopus oryzae (R. oryzae) was reported to have 1(3)-positional specificity, but in the process of R. oryzae-catalyzed biodiesel production, the yield of biodiesel (methyl esters) could reach over 80%. Although during 1(3)-positional specific lipase-catalyzed methanolysis of triglycerides, acyl migration was thought as one of the major reasons for higher methyl ester yield, there was no further study on the mechanism exploration regarding to acyl migration. In this paper, acyl migration and the related kinetics of R. oryzae-mediated methanolysis of triolein was studied systematically. Through our study, it was revealed that during the methanolysis process, acyl migration between 2-MG and 1-MG as well as acyl migration between 1,2-DG and 1,3-DG could take place independent of enzymatic catalysis. The kinetic study showed that the acyl migration was first-order reversible reaction. Based on this finding, a two-step mechanic model including acyl migration was developed for the enzyme-mediated methanolysis for biodiesel production and it was found that the reaction included consecutive hydrolysis and esterification. Further investigation on kinetics showed that R. oryzae lipase was not restrict selectivity of 1(3)-position acyl group, but a preference of 1(3)-position over 2-position, which also contributed to the higher yield of methyl esters.  相似文献   

7.
Adiponectin has anti-atherosclerotic effects through its direct actions on vascular cells. The present study investigates the molecular mechanisms of adiponectin in the migration of endothelial progenitor cells (EPCs) which play an important role in neovascularization and re-endothelization. The phosphorylation of Akt and the activations of Cdc42 and Rac1 were significantly increased by adiponectin. Adiponectin increased the migration activity of EPCs, which was completely inhibited by a PI3-kinase inhibitor. siRNA of Cdc42 or Rac1 completely inhibited the adiponectin-induced migration, but siRNA of Akt had no effects, indicating that adiponectin promotes the migration activities of EPCs mainly through PI3-kinase/Cdc42/Rac1.

Structured summary

MINT-7217629: PAK1 (uniprotkb:Q13153) physically interacts (MI:0914) with CDC42 (uniprotkb:P60953) by pull down (MI:0096)MINT-7217644: PAK1 (uniprotkb:Q13153) physically interacts (MI:0914) with Rac1 (uniprotkb:P63000) by pull down (MI:0096)  相似文献   

8.
Previous studies indicated that a ganglioside 9acGD3 (9-O-acetyl GD3) antibody [the J-Ab (Jones antibody)] reduces GCP (granule cell progenitor) migration in vitro and in vivo. We here investigated, using cerebellar explants of post-natal day (P) 6 mice, the mechanism by which 9acGD3 reduces GCP migration. We found that immunoblockade of the ganglioside with the J-Ab or the lack of GD3 synthase reduced GCP in vitro migration and the frequency of Ca2+ oscillations. Immunocytochemistry and pharmacological assays indicated that GCPs expressed P2Y1Rs (P2Y1 receptors) and that deletion or blockade of these receptors decreased the migration rate of GCPs and the frequency of Ca2+ oscillations. The reduction in P2Y1-mediated calcium signals seen in Jones-treated and GD3 synthase-null GCPs were paralleled by P2Y1R internalization. We conclude that 9acGD3 controls GCP migration by influencing P2Y1R cellular distribution and function.  相似文献   

9.
Explanations for the wide variety of seasonal migration patterns of animals all carry the assumption that migration is costly and that this cost increases with migration distance. Although in some studies, the relationships between migration distance and breeding success or annual survival are established, none has investigated whether mortality during the actual migration increases with migration distance. Here, we compared seasonal survival between Eurasian spoonbills (Platalea leucorodia leucorodia) that breed in The Netherlands and migrate different distances (ca 1000, 2000 and 4500 km) to winter in France, Iberia and Mauritania, respectively. On the basis of resightings of individually marked birds throughout the year between 2005 and 2012, we show that summer, autumn and winter survival were very high and independent of migration distance, whereas mortality during spring migration was much higher (18%) for the birds that wintered in Mauritania, compared with those flying only as far as France (5%) or Iberia (6%). As such, this study is the first to show empirical evidence for increased mortality during some long migrations, likely driven by the presence of a physical barrier (the Sahara desert) in combination with suboptimal fuelling and unfavourable weather conditions en route.  相似文献   

10.
11.
The formation of leukocyte migration inhibition factor (MIF) by the lymphocytes of 13 normal persons immune to the protein antigen keyhole limpet hemocyanin (KLH) has been investigated. KLH-induced MIF formation expressed as percent migration was compared with delayed hypersensitivity, antibody, and in vitro lymphocyte blastogenic responses to this antigen. Individuals were studied 404–840 days (median 540 days) after their last exposure to KLH. Nine persons had delayed hypersensitivity to KLH and 10 had circulating KLH antibody. The lymphocytes of 11 showed an in vitro blastogenic response to KLH stimulation, while the lymphocytes of nine produced MIF after KLH stimulation. The mean percent migration for the subjects with KLH delayed hypersensitivity was 48.2 (range 20.4–70.4) compared with 133 (range 120–161) for the four persons who did not have KLH delayed hypersensitivity (P < 0.05). The correlation coefficient between the precent migration and delayed hypersensitivity was ?0.78 (P < 0.01). No correlation was demonstrated between migration inhibition and the other parameters of immunity.  相似文献   

12.
Migratory ability of second-stage juveniles (J2) of two Meloidogyne chitwoodi races and a M. hapla population were compared in soil-filled columns at 12, 18, and 24 C. J2 of all populations migrated farthest at 18 C and least at 12 C. Nematode survival was significantly reduced (P = 0.05) at 24 C.M. chitwoodi J2 migrated further and in greater numbers than M. hapla J2 at all temperatures. A comparison with and without a host plant demonstrated no preferential migration toward the plant. Water percolation through the migration columns stimulated upward migration.  相似文献   

13.

Background

Augmenter of liver regeneration (ALR) protects liver from various injuries, however, the association of ALR with liver fibrosis, particularly its effect on hepatic stellate cells (HSC), remains unclear. In this study, we investigated the impact of ALR on the activation of HSC, a pivotal event in occurrence of liver fibrosis.

Methods

Liver fibrosis was induced in vivo in mice with heterozygous ALR knockdown (ALR-KD) by administration of CCl4 or bile duct ligation. The effect of ALR-KD and ALR-overexpression on liver fibrosis was studied in mice and in HSC cells as well.

Results

Hepatic collagen deposition and expression of α-smooth muscle actin (α-SMA) were significantly increased in the ALR-KD mice compared to wild-type mice. In vitro, ALR-shRNA resulted in the activation of HSC cell line (LX-2). Furthermore, ALR-shRNA promoted LX-2 cell migration, accompanied by increased filamentous actin (F-actin) assembly. The ALR-KD-mediated increase in HSC migration was associated with mitochondrial fusion, resulting in mitochondria elongation and enhancing ATP production. In contrast, ALR transfection (ALR-Tx) decelerated HSC migration and inhibited F-actin assembly, concomitantly enhancing mitochondrial fission and reducing ATP synthesis. Mechanically, stimulation of HSC migration by ALR-shRNA was attributed to the increased mitochondrial Ca2+ influx in HSCs. Treatment of ALR-shRNA-cells with Ruthenium Red (RuR), a specific inhibitor of mitochondrial calcium uniporter (MCU), significantly suppressed mitochondrial Ca2+ influx, HSC migration, mitochondrial fusion and ATP production. ALR-KD-induced HSC migration was verified in vitro in primary mouse HSCs.

Conclusion

Inhibition of ALR expression aggravates liver fibrosis, probably via promoting HSC migration and mitochondrial fusion.  相似文献   

14.
Directional migration of primordial germ cells (PGCs) toward future gonads is a common feature in many animals. In zebrafish, mouse and chicken, SDF-1/CXCR4 chemokine signaling has been shown to have an important role in PGC migration. In Xenopus, SDF-1 is expressed in several regions in embryos including dorsal mesoderm, the target region that PGCs migrate to. CXCR4 is known to be expressed in PGCs. This relationship is consistent with that of more well-known animals. Here, we present experiments that examine whether chemokine signaling is involved in PGC migration of Xenopus. We investigate: (1) Whether injection of antisense morpholino oligos (MOs) for CXCR4 mRNA into vegetal blastomere containing the germ plasm or the precursor of PGCs disturbs the migration of PGCs? (2) Whether injection of exogenous CXCR4 mRNA together with MOs can restore the knockdown phenotype? (3) Whether the migratory behavior of PGCs is disturbed by the specific expression of mutant CXCR4 mRNA or SDF-1 mRNA in PGCs? We find that the knockdown of CXCR4 or the expression of mutant CXCR4 in PGCs leads to a decrease in the PGC number of the genital ridges, and that the ectopic expression of SDF-1 in PGCs leads to a decrease in the PGC number of the genital ridges and an increase in the ectopic PGC number. These results suggest that SDF-1/CXCR4 chemokine signaling is involved in the migration and survival or in the differentiation of PGCs in Xenopus.  相似文献   

15.
Cell migration is a fundamental process occurring during embryonic development and tissue morphogenesis. In the nematode Caenorhabditis elegans, morphogenesis of the body-wall musculature involves short-range migrations of 81 embryonic muscle cells from the lateral surface of the embryo towards the dorsal and ventral midlines. This study shows that mutations in ina-1 (α-integrin), as well as vab-1 (Eph receptor), and vab-2 (ephrin), display defects in embryonic muscle cell migration. Furthermore, an RNAi-based enhancer screen in an ina-1 weak loss-of-function background identified mnp-1 (matrix non-peptidase homologue-1) as a previously uncharacterized gene required for promoting proper migration of the embryonic muscle cells. mnp-1 encodes a membrane associated metalloproteinase homologue that is predicted to be catalytically inactive. Our data suggest that MNP-1 is expressed in migrating muscle cells and localizes to the plasma membrane with the non-peptidase domain exposed to the extra-cellular environment. Double-mutant analysis between mnp-1(RNAi), ina-1, and vab-1 mutations; as well as tissue specific rescue experiments; indicated that each of these gene products function predominantly independent of each other and from different cell types to affect muscle cell migration. Together these results suggest complex interactions between the adjacent epidermal, neuronal, and muscle cells are required to promote proper muscle cell migration during embryogenesis.  相似文献   

16.
Primordial germ cells (PGCs) are the progenitors of reproductive cells in metazoans and are an important model for the study of cell migration in vivo. Previous reports have suggested that Hedgehog (Hh) protein acts as a chemoattractant for PGC migration in the Drosophila embryo and that downstream signaling proteins such as Patched (Ptc) and Smoothened (Smo) are required for PGC localization to somatic gonadal precursors. Here we interrogate whether Hh signaling is required for PGC migration in vertebrates, using the zebrafish as a model system. We find that cyclopamine, an inhibitor of Hh signaling, causes strong defects in the migration of PGCs in the zebrafish embryo. However, these defects are not due to inhibition of Smoothened (Smo) by cyclopamine; rather, we find that neither maternal nor zygotic Smo is required for PGC migration in the zebrafish embryo. Cyclopamine instead acts independently of Smo to decrease the motility of zebrafish PGCs, in part by dysregulating cell adhesion and uncoupling cell polarization and translocation. These results demonstrate that Hh signaling is not required for zebrafish PGC migration, and underscore the importance of regulated cell-cell adhesion for cell migration in vivo.  相似文献   

17.
In spatially distributed populations, global panmixia can be regarded as the limiting case of long-distance migration. The effect of incorporating partial panmixia into single-locus clines maintained by migration and selection is investigated. In a diallelic, two-deme model without dominance, partial panmixia can increase or decrease both the polymorphic area in the plane of the migration rates and the equilibrium gene-frequency difference between the two demes. For multiple alleles, under the assumptions that the number of demes is large and both migration and selection are arbitrary but weak, a system of integro-partial differential equations is derived. For two alleles with conservative migration, (i) a Lyapunov functional is found, suggesting generic global convergence of the gene frequency; (ii) conditions for the stability or instability of the fixation states, and hence for a protected polymorphism, are obtained; and (iii) a variational representation of the minimal selection-migration ratio λ0 (the principal eigenvalue of the linearized system) for protection from loss is used to prove that λ0 is an increasing function of the panmictic rate and to deduce the effect on λ0 of changes in selection and migration. The unidimensional step-environment with uniform population density, homogeneous, isotropic migration, and no dominance is examined in detail: An explicit characteristic equation is derived for λ0; bounds on λ0 are established; and λ0 is approximated in four limiting cases. An explicit formula is also deduced for the globally asymptotically stable cline in an unbounded habitat with a symmetric environment; partial panmixia maintains some polymorphism even as the distance from the center of the cline tends to infinity.  相似文献   

18.
《Translational oncology》2021,14(12):101236
Cancer-associated fibroblasts (CAFs) have important roles in promoting cancer development and progression. We previously reported that high expression of sex-determining region Y (SRY)-box9 (SOX9) in oral squamous cell carcinoma (OSCC) cells was positively correlated with poor prognosis. This study developed three-dimensional (3D) in vitro models co-cultured with OSCC cells and CAFs to examine CAF-mediated cancer migration and invasion in vitro and in vivo. Moreover, we performed an immunohistochemical analysis of alpha-smooth muscle actin and SOX9 expression in surgical specimens from 65 OSCC patients. The results indicated that CAFs promote cancer migration and invasion in migration assays and 3D in vitro models. The invading OSCC cells exhibited significant SOX9 expression and changes in the expression of epithelial–mesenchymal transition (EMT) markers, suggesting that SOX9 promotes EMT. TGF-β1 signalling inhibition reduced SOX9 expression and cancer invasion in vitro and in vivo, indicating that TGF-β1-mediated invasion is dependent on SOX9. In surgical specimens, the presence of CAFs was correlated with SOX9 expression in the invasive cancer nests and had a significant impact on regional recurrence. These findings demonstrate that CAFs promote cancer migration and invasion via the TGF-β/SOX9 axis.  相似文献   

19.
Directional migration of neural crest (NC) cells is essential for patterning the vertebrate embryo, including the craniofacial skeleton. Extensive filopodial protrusions in NC cells are thought to sense chemo-attractive/repulsive signals that provide directionality. To test this hypothesis, we generated null mutations in zebrafish fascin1a (fscn1a), which encodes an actin-bundling protein required for filopodia formation. Homozygous fscn1a zygotic null mutants have normal NC filopodia due to unexpected stability of maternal Fscn1a protein throughout NC development and into juvenile stages. In contrast, maternal/zygotic fscn1a null mutant embryos (fscn1a MZ) have severe loss of NC filopodia. However, only a subset of NC streams display migration defects, associated with selective loss of craniofacial elements and peripheral neurons. We also show that fscn1a-dependent NC migration functions through cxcr4a/cxcl12b chemokine signaling to ensure the fidelity of directional cell migration. These data show that fscn1a-dependent filopodia are required in a subset of NC cells to promote cell migration and NC derivative formation, and that perdurance of long-lived maternal proteins can mask essential zygotic gene functions during NC development.  相似文献   

20.
Post-breeding migration in land-based marine animals is thought to offset seasonal deterioration in foraging or other important environmental conditions at the breeding site. However the inter-breeding distribution of such animals may reflect not only their optimal habitat, but more subtle influences on an individual’s migration path, including such factors as the intrinsic influence of each locality’s paleoenvironment, thereby influencing animals’ wintering distribution. In this study we investigated the influence of the regional marine environment on the migration patterns of a poorly known, but important seabird group. We studied the inter-breeding migration patterns in three species of Eudyptes penguins (E. chrysolophus, E. filholi and E. moseleyi), the main marine prey consumers amongst the World’s seabirds. Using ultra-miniaturized logging devices (light-based geolocators) and satellite tags, we tracked 87 migrating individuals originating from 4 sites in the southern Indian Ocean (Marion, Crozet, Kerguelen and Amsterdam Islands) and modelled their wintering habitat using the MADIFA niche modelling technique. For each site, sympatric species followed a similar compass bearing during migration with consistent species-specific latitudinal shifts. Within each species, individuals breeding on different islands showed contrasting migration patterns but similar winter habitat preferences driven by sea-surface temperatures. Our results show that inter-breeding migration patterns in sibling penguin species depend primarily on the site of origin and secondly on the species. Such site-specific migration bearings, together with similar wintering habitat used by parapatrics, support the hypothesis that migration behaviour is affected by the intrinsic characteristics of each site. The paleo-oceanographic conditions (primarily, sea-surface temperatures) when the populations first colonized each of these sites may have been an important determinant of subsequent migration patterns. Based on previous chronological schemes of taxonomic radiation and geographical expansion of the genus Eudyptes, we propose a simple scenario to depict the chronological onset of contrasting migration patterns within this penguin group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号