首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
雷竹覆盖物分解速率及其硅含量的变化   总被引:2,自引:0,他引:2  
黄张婷  张艳  宋照亮  姜培坤  项婷婷 《生态学报》2013,33(23):7373-7381
以冬季地表覆盖增温为核心的雷竹早产高效栽培技术被广泛应用于我国亚热带地区的雷竹(Phyllostachys praecox)产区。为探明雷竹覆盖物(稻草和竹叶)的分解速率及在分解残余物中硅含量的年动态变化规律,在浙江临安市雷竹主产区采用分解管法进行了覆盖物分解试验。试验结果表明,稻草、竹叶的月平均分解速率分别为8.5 %和11.9 %,在1a内分别分解了67.5 %和79.3 %。在1年的分解过程中,稻草和竹叶C含量随时间的推移而下降,而N含量则随时间的推移而增加,两者的C/N比总体都呈现下降的趋势,但在试验初期前者的下降幅度显著大于后者。稻草、竹叶覆盖残余物中的Si含量随着分解时间的增加而增加,并都在12月达到最大值81.8 g?kg-1和80.0 g?kg-1。稻草、竹叶的分解残余物中硅含量与铝含量或铁含量之间均呈极显著正相关(p<0.01),但与磷含量无显著相关性(p>0.05)。  相似文献   

2.
Molecular-bred Coprinus cinereus monokaryotic strains with high lignin- and xylan-degrading activities were mixed-cultured at 27 degrees C in the liquid medium containing 0.5% (w/v) cut rice straw and 0.025% MnCl2. After 3 weeks, the culture supernatant was extensively treated with crude cellulase, showing the presence in it of 9.3% of the total cellulose of rice straw. When rice straw treated with 0.1 N NaOH or cultured with Ganoderma applanatum were used, the recoveries of the cellulose increased up to 29%. The same experiments were done by using a non-bred control strain, showing the recoveries of the cellulose from the treated or cultured rice straw to be 8%.  相似文献   

3.
The rates of enzymatic hydrolysis of pretreated rice straw and bagasse have been studied and compared with the hydrolysis rates of microcrystalline cellulose powder (MCCP) and Solka Floc. The effects of particle size reduction and enzyme loading on the rates of hydrolysis of rice straw and bagasse were also studied. It was found that the rates of hydrolysis of pretreated rice straw and bagasse are much higher than that of MCCP and Solka Floc. For both rice straw and bagasse, particle size reduction had very little effect in enhancing the rate of hydrolysis. Lignin present at <10% did not seem to hinder the accessibility of the enzyme to the cellulose surface. An enzyme loading > 40 Ug?1 had no effect on the hydrolysis rate of rice straw or bagasse.  相似文献   

4.
Untreated and urea-treated straw and straw fractions of seven rice varieties from three cultivation seasons have been evaluated on their DM, OM loss and degradation characteristics from in sacco disappearance and in vitro gas production measurements. Drying temperatures from 45°C to 100°C did not seem to influence the degradability of urea-treated rice straw, whereas urea-treated straw dried at freezing temperatures (−35°C) gave slightly higher degradability than higher temperatures. Untreated early season rice straw showed higher degradability than straw of middle and later season rice. There was a significant increase in the degradation of straw after urea treatment, and greatest for late and middle season rice straw. On average, urea-treatment of rice straw increased the DM and OM in sacco losses after 48 h of incubation (48 h) by 24.0% and 30.7%, respectively. In order to study the kinetics of the degradation of fibre fractions, the disappearance in sacco was also estimated for the loss of hemicellulose, cellulose and extractable biogenic silica (EBSi). There was a great variation in the content of silica between varieties. Rice straw degradation seemed to be related to the biogenic silica content (acid detergent insoluble silica (ADISi)). Urea treatment increased the extraction of biogenic silica and hence increased the degradation of hemicellulose and cellulose. The improvement in sacco disappearance of cellulose due to urea treatment was 36.8%, 19.5% and 5.3% for late, middle, and early rice straw, respectively. The degradability was higher for the stem than for the leaf blades and leaf sheaths. The response to urea treatment, however, was higher for leaf sheaths and leaf blades than for the stems, evening out differences in degradability. Urea treatment tended to increase the production of acetic acid whereas there was no effect on propionic and butyric acid production.  相似文献   

5.
The effects of chemical, physical, and enzymatic treatments of rice straw and sugarcane bagasse on the microbial digestibility of cellulose have been investigated. Treatment with 4% NaOH for 15 min at 100 C increased the digestibility of cellulose from 29.4 to 73%. Treatment with 5.2% NH3 could increase digestibility to 57.0% Treatments with sulfuric acid and crude cellulase preparation solubilized cellulose but did not increase the digestibility. Grinding or high-pressure cooking of the substrate had little effect on increasing the digestibility of cellulosic substrates by the Cellulomonas species.  相似文献   

6.
A simple process (the direct-saccharification-of-culms (DiSC) process) to produce ethanol from rice straw culms, accumulating significant amounts of soft carbohydrates (SCs: glucose, fructose, sucrose, starch and β-1,3-1,4-glucan) was developed. This study focused on fully mature culms of cv. Leafstar, containing 69.2% (w/w of dried culms) hexoses from SCs and cellulose. Commercially-available wind-separation equipment successfully prepared a culm-rich fraction with a SC recovery of 83.1% (w/w) from rice straw flakes (54.1% of total weight of rice straw). The fraction was suspended in water (20%, w/w) for starch liquefaction, and the suspension was subjected to a simultaneous saccharification and fermentation with yeast, yielding 5.6% (w/v) ethanol (86% of the theoretical yield from whole hexoses in the fraction) after 24 h fermentation. Thus, the DiSC process produced highly-concentrated ethanol from rice straw in a one vat process without any harsh thermo-chemical pretreatments.  相似文献   

7.
The effect of lignocellulose degradation in wheat straw, rice straw, and sugarcane bagasse on the accumulation and antioxidant activity of extra- (EPS) and intracellular polysaccharides (IPS) of Inonotus obliquus under submerged fermentation were first evaluated. The wheat straw, rice straw, and sugarcane bagasse increased the EPS accumulation by 91.4, 78.6, and 74.3 % compared with control, respectively. The EPS and IPS extracts from the three lignocellulose media had significantly higher hydroxyl radical- and 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity than those from the control medium. Of the three materials, wheat straw was the most effective lignocellulose in enhancing the mycelia growth, accumulation and antioxidant activity of I. obliquus polysaccharides (PS). The carbohydrate and protein content, as well as the monosaccharide compositions of the EPS and IPS extracts, were correlated with sugar compositions and dynamic contents during fermentation of individual lignocellulosic materials. The enhanced accumulation of bioactive PS of cultured I. obliquus supplemented with rice straw, wheat straw, and bagasse was evident.  相似文献   

8.
本论文探讨了不同浓度的稀H_2SO_4和稀NaOH预处理对大豆秸秆、水稻秸秆、象草和狼尾草四种不同生物质酶解制备还原糖的影响。结果表明,大豆秸秆、水稻秸秆、象草和狼尾草具有较高的纤维素和半纤维素含量,是制备还原糖的理想原料。与稀H_2SO_4预处理相比,经稀NaOH预处理后的样品表现出较好的酶解性能。通过使用4%的NaOH对大豆秸秆和狼尾草进行预处理,还原糖产量分别为145.8 mg/mL和319.2 mg/mL。此外,以1%NaOH预处理后的水稻秸秆和象草为原料,可以分别获得385.2 mg/mL和231.6 mg/mL还原糖产量。  相似文献   

9.
The combined effects of lucerne (Medicago sativa L.) extract supplementation and ammonia treatment of rice straw (Oryza sativa, variety Thaibonnet) on the ruminal digestion of cell wall components were investigated in six continuous culture systems using a randomised complete block design. Data were fitted to second-order polynomial models. Untreated rice straw had higher contents of ash-free cell wall residues (CWR; 763 v. 687 g/kg dry matter (DM)) and non-cellulosic sugars (191 v. 166 g/kg DM) than treated rice straw. Ammoniation preferentially removed xylose, which resulted in a lower xylose-to-arabinose ratio (5.1 v. 5.8). In absence of lucerne supplementation and ammoniation, degradability coefficients were 0.54, 0.46, 0.58, 0.54, 0.42 and 0.60 for cellulose–glucose, xylose, arabinose, galactose, mannose and uronic acids, respectively. Both factors had significant effects on the microbial degradation of structural polysaccharides. With lucerne extract at an optimal level, ammonia treatment increased ash-free cell wall degradation by more than 10%. The degradability coefficients were increased by ammoniation without any significant interaction with lucerne extract, except for glucose, whose degradability was mostly influenced by lucerne extract in a curvilinear way. The comparison of regression coefficients in cell wall and CWR models suggested that ammoniation improved the degradabilities of xylose, galactose and mannose by partly solubilising the corresponding hemicelluloses and by improving the susceptibility of the remaining fraction to microbial attack, whereas it increased the degradability of arabinose only by favouring microbial attack.  相似文献   

10.
不同有机肥对土壤镉锌生物有效性的影响   总被引:4,自引:0,他引:4  
在南方典型稻田设置连续4年施用猪粪、鸡粪、稻草的定位试验,监测施用不同有机肥条件下土壤及水稻植株镉(Cd)、锌(Zn)含量的变化,研究有机肥对土壤Cd、Zn活性及其交互作用的影响.结果表明: 施用有机肥(猪粪、鸡粪、稻草)对土壤全Cd、有效态Cd含量及Cd活性皆无显著影响,但有增加土壤Cd全量的趋势,且显著增加土壤全Zn、有效态Zn含量及Zn活性.施用猪粪、鸡粪、稻草皆可降低稻米Cd含量,降Cd效果为猪粪>鸡粪>稻草,猪粪处理水稻稻米、茎、叶Cd含量分别比对照下降37.5%、44.0%、36.4%;鸡粪处理水稻米、茎、叶Cd含量分别比对照下降22.5%、33.8%、22.7%;而稻草处理水稻米Cd含量比对照下降7.5%,但茎、叶Cd含量比对照分别增加8.2%、22.7%;施用猪粪、鸡粪降低稻米Cd含量主要是降低了水稻植株对土壤Cd的富集,而施用稻草则主要是降低了水稻茎Cd向稻米的转运.施用有机肥还增加了水稻茎Zn含量,施用猪粪、鸡粪、稻草的水稻茎Zn含量比单施化肥分别增加53.4%、41.2%、13.9%,但对水稻稻米、叶Zn含量无显著影响.Zn、Cd在土壤、植株茎中皆表现出显著的拮抗作用,土壤及水稻茎Zn含量的增加显著抑制了水稻米、茎、叶对Cd的吸收积累,且随土壤有效态Zn/Cd含量比值的增加,Zn、Cd竞争土壤吸附不是抑制水稻吸收积累Cd的主控因子,而Zn、Cd竞争吸收才是影响水稻吸收积累Cd的主控因子.  相似文献   

11.
Supplementing the rice straw substrate colonized by the mushroom, Pleurotus sajor-caju, with powdered oil seed cakes (mustard, niger, sunflower, cotton, and soyabean) increased the mushroom yields between 50 and 100%, compared to the unsupplemented substrate. Oil seed cake supplementation also effected an increase in the solubility of the rice straw substrate; there was an increase in the contents of free sugars and amino acids, and a decrease in cellulo-hemicellulosics. Correspondingly, there was also an increase in the activities of carboxymethylcellulase, hemicellulase, and protease. In vitro dry matter enzymatic digestibility measured by two-step enzymatic digestibility of the spent straw (material remaining from the straw substrate, supplemented with the oil seed cakes), indicated a significant increase over that of the spent straw derived from the unsupplemented lot.  相似文献   

12.
针对秸秆处理不当影响全世界环境污染的问题,筛选多功能秸秆降解菌,旨在得到高效降解秸秆且具有促生作用的微生物菌种。结合纤维素钠-刚果红(CMC-Na)平板筛选,通过16S rRNA基因分析,进行菌株鉴定,得到一株具有纤维素降解效果的菌株XJ-132,经16S rRNA基因鉴定为枯草芽胞杆菌(Bacillus subtilis)。与单独施用秸秆处理相比,加入菌株XJ-132 60 d后,秸秆降解率提高21.0%,且对水稻生长促进作用显著,地上、下部鲜重分别增加17.8%和9.6%。水稻种子喷施菌株XJ-132发酵液,低浓度发酵液对种子萌发具有一定促进作用。结果表明,菌株XJ-132可能通过产吲哚乙酸(IAA)、产铁载体、产氨等多种有益物质,降解秸秆的同时促进水稻生长。筛选具有促生作用的秸秆降解菌能够更好地加速秸秆降解,具有广泛的开发利用前景。  相似文献   

13.
张行  陈芳清  秦凯  黄永文 《生物资源》2020,42(3):327-334
为提高水稻秸秆利用效率,改进水稻秸秆实地混合厌氧发酵产甲烷技术,本研究开展了添加剂在混合厌氧发酵系统的应用研究。试验选取水稻秸秆和猪粪作为发酵原料,通过分别添加不同的浓度的吐温20和腐植酸,测定甲烷的产气量和浓度、秸秆的降解和土壤肥力的变化,以揭示添加剂类型及其浓度对水稻田实地甲烷生产系统的影响。结果表明:添加剂的掺入并未影响产气的动态变化趋势,但显著地促进产气和提高产气浓度,整体效果由高到低为腐植酸吐温20对照,其中经腐植酸处理的产气量和产气浓度对照相比分别提高了50. 73%和24. 55%。添加剂的掺入有利于水稻秸秆纤维素和半纤维素的降解,但对木质素没有显著影响;其中以0. 15 g/L腐植酸和0. 30 g/L吐温20的降解率最高,相较于对照其纤维素降解率均提高了22. 11%,半纤维素降解率分别提高了107. 13%和98. 39%。添加剂的掺入能显著增加土壤肥力,以0. 15 g/L腐植酸和0. 30 g/L吐温20处理水平的效果最优,相较于对照,其土壤有机质分别增加了29. 63%和23. 72%,全氮分别增加了52. 32%和42. 38%,全磷分别增加了83. 33%和57. 14%。  相似文献   

14.
不同纤维素原料超临界水解的研究   总被引:2,自引:0,他引:2  
分别以稻草秸秆、经预处理的稻草秸秆、脱脂棉、微晶纤维素和定性滤纸为原材料,利用间歇式的超临界反应设备,在400℃的盐浴中进行木质纤维素的超临界水解,采用3,5-二硝基水杨酸(DNS)法对产物中的还原糖进行测定,研究反应时间对不同纤维素原料水解产糖的影响。结果表明:在超临界条件下,不同原料在较短的时间内还原糖含量均出现峰值,随着反应时间的延长还原糖产量呈现下降的趋势;稻秆、预处理后的稻秆、脱脂棉、微晶纤维素和定性滤纸的最大产糖量分别为7.42、9.05、12.55、18.01和14.24 g/L;与此对应的最佳反应时间分别为3.5、4、3、3、4 min;对应的最大还原糖产率分别为14.84%、18.10%、25.10%、36.02%、28.48%。  相似文献   

15.
Rice straw can serve as potential material for bioenergy production. However, the quantitative effects of increasing atmospheric carbon dioxide concentration [CO2] on rice straw quality and the resulting consequences for bioenergy utilization are largely unknown. In this study, two rice varieties, WYJ and LY, that have been shown previously to have a weak and strong stimulatory response to rising [CO2], respectively, were grown with and without additional CO2 at China free‐air carbon dioxide enrichment (FACE) platform. Qualitative and quantitative measurements in response to [CO2] included straw biomass (including leaf, sheath, and stem), the concentration of nonstructural and structural carbohydrates, the syringyl‐to‐guaiacyl (S/G) ratio of lignin, glucose and xylose release from structural carbohydrate, total sugar release by enzymatic saccharification, and sugar yield and the ratio of cellulose and hemicellulose degradation. Elevated [CO2] significantly increased straw biomass and nonstructural carbohydrate contents while enhancing the degraded ratio of structural carbohydrates as indicated by the decreased lignin content and increased S/G ratio. Overall, total sugar yield (g m?2) in rice straw significantly increased by 27.1 and 57% for WYJ and LY at elevated [CO2], respectively. These findings, while preliminary, suggest that rice straw quality and potential biofuel utilization may improve as a function of rising [CO2].  相似文献   

16.
不同木质纤维素基质上白腐菌降解特性的研究   总被引:14,自引:0,他引:14  
通过测定木质素、纤维素、半纤维素和漆酶分泌的变化,研究白腐菌在稻草、木屑、粗纤维素、滤纸、黑液木素基质上的降解特性。结果表明,除黑液木素上白腐菌不能生长外,在前25d,各基质中纤维素、半纤维素和木质素含量呈持续下降趋势,之后,降解速率减少,其中木质素的降解速率大于纤维素和半纤维素的降解速率。漆酶分泌在生长初期呈快速上升趋势,第10d酶活达到最大,第10~20d快速下降,其后基本不变,基质中酶活大小顺序为稻草基质、木屑基质、粗纤维和滤纸基质,显示了木质素存在对漆酶分泌的诱导作用。  相似文献   

17.
Rice straw is a lignocellulosic biomass, and has been recognized as a renewable organic substance and alternative energy source. In this study, rice straw was pretreated with hypochlorite-hydrogen peroxide (Ox-B) solution. The optimal pretreatment conditions were determined via response surface methodology, and the pretreated rice straw was hydrolyzed with exo-glucanase, endoglucanase, hemicellulase, and β-glucosidase Accellerase 1000? (endo-glucanase equivalent activity of 1,250 carboxy methyl cellulose (CMC) U/g of rice straw pretreated for 24 h). The optimal conditions were as follows: 60 min pretreatment using Ox-B solution containing 0.6% hypochlorite and 25% hydrogen peroxide for 1 g of rice straw in a total reaction volume of 240 mL. Under these conditions, 406.8 mg of d-glucose and 224.0 mg of d-xylose were obtained from 1 g of rice straw. The fermentation of enzymatic hydrolysates containing 8.14 g/L d-glucose and 4.49 g/L d-xylose with Pichia stipitis generated 3.65 g/L of ethanol with a corresponding yield of 0.37 g/g. The maximum possible ethanol conversion rate is 72.54%.  相似文献   

18.
研究了白腐菌及纤维素复合酶对稻草秸秆的协同生物降解。结果表明,利用黄孢原毛平革菌固态发酵稻草秸秆的过程中,LiP和MnP的最大活力可以达到28.3U/g和12.6U/g,同时,秸秆中的木质素能被有效降解,但纤维素、半纤维素降解率较低。添加黑曲霉所产的纤维素复合酶能有效地促进秸秆腐熟程度。在接入白腐菌培养10天后,每克稻草添加3 IU纤维素酶液并酶解48h可以使稻草秸秆中纤维素降解53.8%,半纤维素降解57.8%,木质素降解44.5%,干物质损失46.3%。此时细胞壁出现大范围破损,整个组织变得松散,秸秆完全腐熟。  相似文献   

19.
稻田温室气体减排措施对稻米氨基酸含量的影响   总被引:1,自引:0,他引:1  
为探索稻田中温室气体减排措施对稻米氨基酸含量的影响,用10个不同方法对双季稻田进行处理,并使用高效液相色谱分别测定了各处理稻田中所产稻米中的16种氨基酸的含量,其中色谱柱为Agilent Zorbax AAA分析柱,柱前衍生使用邻苯二甲醛(OPA)和9-芴甲基氯甲酸酯(FMOC-CL)为衍生试剂。结果发现:1)10个处理中的稻米16种氨基酸种类齐全,施氮肥+添加生物质炭48 t/hm2+间歇灌溉(NPK+HBC+IF)处理中所得氨基酸总量为6520.7 mg/100g,效果最佳;对照组处理(不施加氮肥+无稻草还田+间歇灌溉)所得氨基酸含量4338.0 mg/100g为最低。以对照组处理所得必需氨基酸百分含量36.8%为最高值;无稻草还田+长期淹水(NPK+CF)处理方法所得必需氨基酸百分含量33.1%为最低值。10个处理中16种氨基酸中含量较高的氨基酸均为天冬氨酸、谷氨酸和精氨酸,含量最低的均为甲硫氨酸;2)施氮肥量相同时,长期淹水与间歇灌溉相比,氨基酸总量增加185.1 mg/100g,非必需氨基酸百分含量增加3%,谷氨酸、组氨酸和丝氨酸含量明显升高,但亮氨酸含量显著降低;3)施用氮肥能提高稻米中的氨基酸含量,且随着氮肥使用量的增加,氨基酸含量也随之增加,组氨酸含量增加显著;4)供氮量相同时,添加猪粪使氨基酸总含量升高了286.0 mg/100g,此结果表明,在供氮量相同的情况下,施用猪粪更有利于稻米氨基酸含量的提高;5)灌溉模式相同时,稻草还田配施氮肥对必需氨基酸和氨基酸总量均有提高,天冬氨酸、谷氨酸和组氨酸的含量增加较多,甲硫氨酸含量略有下降;随着稻草还田量的增加,对非必需氨基酸影响较为明显;当稻草半量还田(还田量为3 t/hm2)时,稻米中氨基酸总量增加最多;稻草全量还田+长期淹水(NPK+HRS+CF)与稻草半量还田+间歇灌溉(NPK+LRS+IF)处理中的氨基酸含量基本接近,但必需氨基酸含量前者略高于后者,说明稻草还田与水肥管理对氨基酸含量影响可能存在交互作用;6)添加生物质炭配施氮肥提高了稻米必需氨基酸与非必需氨基酸含量,且随着生物质炭添加量的增加而增加;与稻草还田、添加猪粪处理相比,生物质炭的添加对氨基酸总含量提升的效果最为显著,对稻田实际生产具有指导意义且具有一定的环境效益。  相似文献   

20.
Abstract

Mild alkaline pretreatment was evaluated as a strategy for effective lignin removal and hydrolysis of rice straw. The pretreatment efficiency of different NaOH concentrations (0.5, 1.0, 1.5 or 2.0% w/w) was assessed. Rice straw (RS) pretreated with 1.5% NaOH achieved better sugar yield compared to other concentrations used. A cellulose conversion efficiency of 91% (45.84?mg/ml glucose release) was attained from 1.5% NaOH pretreated rice straw (PRS), whereas 1% NaOH pretreated rice straw yielded 35.10?mg/ml of glucose corresponding to a cellulose conversion efficiency of 73.81%. The ethanol production from 1% and 1.5% NaOH pretreated RS hydrolysates was similar at ~3.3% (w/v), corresponding to a fermentation efficiency of 86%. The non-detoxified hydrolysate was fermented using the novel yeast strain Saccharomyces cerevisiae RPP-03O without any additional supplementation of nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号