首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effect of industrial immissions with high sulphur dioxide content on the upper horizons of spruce forest soils in NW Bohemia was investigated. The content of sulphates, oxidative activity towards sulphide, elemental sulphur, thiosulphate and sulphite, concentration and species representation of thiobacilli in horizons F, H and A in regions highly affected by immissions (two localities) and in regions relatively less influenced (three localities) were followed. In the affected areas the sulphur content in the soil was higher, the species representation of thiobacilli was similar and their concentration was higher, the ability of the soil to oxidize thiosulphate was inhibited and oxidation of elemental sulphur was stimulated. The oxidation of sulphide and sulphite was not significantly affected by the immissions. Changes caused by immissions could be observed only in horizons F and H and did not involve horizons A.  相似文献   

2.
In a laboratory incubation study, effect of various anions on net methane production in two rice soils (alluvial and acid sulphate) under flooded conditions was examined. Methane production was considerable in alluvial soil and almost negligible in acid sulphate soil, albeit with a higher density of viable methanogens, during 30-day incubation without salts. Sodium salts of hydroxide and phosphate further stimulated methane production in alluvial soil and marginally in acid sulphate soil. But, addition of sodium molybdate, a selective inhibitor of sulphate-reducing bacteria, increased the production of methane in acid sulphate soil. In contrast, nitrite, nitrate, sulphite and sulphate suppressed the production of methane in both soils. Acetate served as an excellent substrate for methanogenesis in alluvial soil, but not in acid sulphate soil. Succinate and citrate also stimulated methane production especially in alluvial soil, but after a longer lag. In acid sulphate soil, most of the added carbon in the form of sodium salts of carboxylic acids was converted to CO2 and not methane, which is consistent with their preferential use by the sulphate-reducing bacteria. In general, none of the amendments could increase production of methane in acid sulphate soil to the same level as in alluvial soil.  相似文献   

3.
Dynamics of oxidation of inorganic sulphur compounds to sulphate by the soil of spruce forests was investigated. Sulphide, sulphite and thiosulphate are oxidized to sulphate at a maximal rate at the beginning of the reaction, oxidation of elemental sulphur exhibits a lag phase. Linear relationships between the amounts of the produced sulphate and concentrations of substrates in the soil could be detected. On the basis of this finding a method for comparison of the oxidative activity of various soils was proposed.  相似文献   

4.
The occurrence of biochemical activities of the sulphur cycle was followed in isolates of heterotrophic bacteria from the fermentative horizon of a spruce stand, a grass-covered withered spruce stand and of mountain ash and birch stand in the area strongly influenced by sulphur immissions. The occurrence of bacteria capable of reducing S0 to S2−, oxidizing S0 and S2O3 2− to SO4 2− and solubilizing S0 increased in the above order. The occurrence of producers of thiosulphate sulphurtransferase (rhodanese), thiosulphate oxidase and sulphite oxidase increased and the level of the production of these enzymes increased as well. Heterotrophic bacteria (mostly pseudomonads) from the grass-covered stands exhibit more activities of the sulphur cycle than bacteria from the spruce stand without ground vegetation.  相似文献   

5.
The existing knowledge of the effects of industrial SO2 immissions on forest soil microflora is reviewed. Most Czechoslovak data were obtained in heavily polluted spruce stands in the Ore Mountain and in the Slavkov Forest (NW Bohemia). The industrial SO2 immissions soil. Pseudomonads yield to yellow-and red-pigmented microorganisms, among micromycetes there is a higher incidence of the generaRhizopus andMucor. The biochemical capabilities of the bacterial populations are reviewed: the immissions have a negative effect on the occurrence and efficiency of heterotrophic nitrifiers, increase the concentration of autotrophic as well as heterotrophic oxidizers of S0 and of sulfite-resistant bacteria. The soil activities of the C and N cycles are inhibited whereas the oxidation of S0 is stimulated. Changes in the soil of spruce stands are probably due to intoxication with sulfur dioxide (and possibly with sulfite) rather than to acidification. Replacement of withered spruce stands with mountain ash brings about a dramatic improvement of the soil microflora. Presented at the16th Congress of the Czechoslovak Microbiological Society, Banská Bystrica, October 21–23, 1983.  相似文献   

6.
Some factors influencing the oxidative activity of upper horizons of spruce forest soils (a mixture of fermentative and humus layers) toward intermediates of the oxidative part of the sulphur cycle were investigated. Preincubation of the soil with added cysteine, sulphide, elemental sulphur or thiosulphate was found to stimulate enzyme systems oxidating any of these compounds. Sulphite and sulphate were ineffective in this respect. The oxidation of elemental sulphur was stimulated by CaCO3, technical urea and high doses of superphosphate and potassium sulphate. It was inhibited by KH2PO4, pure urea, 40 % potassium salt, ammonium nitrate with calcium carbonate and the fertilizer NPK I. It proceeded at the highest rate at approximately 60 % capillary capacity (61 % of mass water content). Oxidation of thiosulphate was stimulated by KH2PO4, pure urea, superphosphate, potassium sulphate and only slightly by the fertilizer NPK I. It was inhibited by CaCO3, 40 % potassium salt and only slightly by ammonium nitrate with calcium carbonate. Potassium chloride, glucose and technical urea were without effect. The oxidation proceeded at the highest rate at 35 % maximal capillary capacity (48 % mass water content).  相似文献   

7.
Summary Sulphate in concentrations of 500 and 1000 mg SO4-S/l did not inhibit methanation of synthetic waste-water (acetate + methanol + glucose) by sludge from a digester treating neutral spent sulphite process effluents. The role of sulphate reducers in the conversion of those substrates was minor although sulphate-reducing bacteria were present with a viable count similar to that of methane-producing bacteria in the sludge. Neutral spent sulphite liquor was partially converted to methane (40% of chemical oxygen demand) under these conditions.Molybdate (20 mM) inhibited methanation of both synthetic waste-water and neutral spent sulphite liquor. Acetate accumulated in glucose plus molybdate media. Molybdate had a direct inhibitory effect on enriched acetoclastic methane-producing bacteria. Molybdate was bacteriocidic to sulphate-reducing bacteria and bacteriostatic to methane-producing bacteria.  相似文献   

8.
Oxidation of reduced sulphur compounds by Thiobacillus acidophilus was studied with cell suspensions from heterotrophic and mixotrophic chemostat cultures. Maximum substrate-dependent oxygen uptake rates and affinities observed with cell suspensions from mixotrophic cultures were higher than with heterotrophically grown cells. ph Optima for oxidation of sulphur compounds fell within the pH range for growth (pH 2–5), except for sulphite oxidation (optimum at pH 5.5). During oxidation of sulphide by cell suspensions, intermediary sulphur was formed. Tetrathionate was formed as an intermediate during aerobic incubation with thiosulphate and trithionate. Whether or not sulphite is an inter-mediate during sulphur compound oxidation by T. acidophilus remains unclear. Experiments with anaerobic cell suspensions of T. acidophilus revealed that trithionate metabolism was initiated by a hydrolytic cleavage yielding thiosulphate and sulphate. A hydrolytic cleavage was also implicated in the metabolism of tetrathionate. After anaerobic incubation of T. acidophilus with tetrathionate, the substrate was completely converted to equimolar amounts of thiosulphate, sulphur and sulphate. Sulphide- and sulphite oxidation were partly inhibited by the protonophore uncouplers 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) and by the sulfhydryl-binding agent N-ethylmaleimide (NEM). Oxidation of elemental sulphur was completely inhibited by these compounds. Oxidation of thiosulphate, tetrathionate and trithionate was only slightly affected. The possible localization of the different enzyme systems involved in sulphur compound oxidation by T. acidophilus is discussed.  相似文献   

9.
In regions highly influenced by immissions the concentrations of serobic and ammonifying bacteria and yeasts on the surface of apical shoots of spruce were 10–30 times higher in summer than in regions that were relatively less influenced; concentrations of micromycetes were almost two-fold. Deterioration by immissions eliminated the autotrophic oxidizers of sulphur and decreased the number of asymbiotic nitrogen-fixing bacteria to zero. Counts of proteolytic bacteria decreased pronoucedly. On the other hand, the number of bacteria capable of multiplication at pH 4.0 in the presence of 10 mM sulphite increased. The proportion of lipolytic bacteria, micromycetes and mainly of yeasts increased considerably. A similar trend was observed in the case of amylolytic bacteria. Heterotrophic sulphur oxidizers could not be detected. The possible significance of this phenomenon for senescence of conifer needle is discussed.  相似文献   

10.
Summary The effects of wheat straw and pressed sugar beet pulp on sulphur oxidation were determined in a loam soil amended with 1% (w/w) elemental sulphur. Wheat straw stimulated the oxidation of elemental sulphur over the first 2 to 3 weeks of the incubation period, resulting in an increase in LiCl-extractable sulphate. After 4 to 7 weeks incubation however, the only significant increase in soil sulphate followed the 1% straw addition, while at week 7 sulphate concentrations in the 0.25% and 5.0% straw amended soils were lower than the control. Pressed sugar beet pulp (1% w/w) initially stimulated the oxidation of elemental sulphur in the soil, but by weeks 3 to 7 of the incubation period rates of oxidation in pulp-amended soils were lower than the control. Towards the end of the incubation period however, sulphate concentrations in the amended soils exceeded the control values, significantly so by week 11. The concentration of thiosulphate and tetrathionate also increased in soils receiving sugar beet pulp. Nitrification was inhibited in soils in which sulphur oxidation was actively occurring. Although possible alternatives are mentioned, such inhibition appears to result from a decrease in soil pH brought about by the oxidation of elemental sulphur to sulphuric acid.  相似文献   

11.
The addition of sulphite to rat-liver mitochondria (RLM) causes an uptake of H+ that is unaffected by NEM and butylmalonate. The uptake of H+ induced by sulphate or thiosulphate is abolished by NEM and butylmalonate in freshly isolated RLM, whereas it is inhibited only by butylmalonate in sulphite-pretreated mitochondria. The data suggest that sulphite is cotransported with H+, whereas the movement of H+ associated to the uptake of sulphate or thiosulphate by RLM is mediated by either phosphate or sulphite.  相似文献   

12.
Alkaliphilic sulphur-oxidizing bacteria were isolated from samples from alkaline environments including soda soil and soda lakes. Two isolates, currently known as strains AL 2 and AL 3, were characterized. They grew over a pH range 8.0–10.4 with an optimum at 9.5–9.8. Both strains could oxidize thiosulphate, sulphide, polysulphide, elemental sulphur and tetrathionate. Strain AL 3 more actively oxidized thiosulphate and sulphide, while isolate AL 2 had higher activity with elemental sulphur and tetrathionate. Isolate AL 2 was also able to oxidize trithionate. The pH optimum for thiosulphate and sulphide oxidation was between 9–10. Some activity remained at pH 11, but was negligible at pH 7. Metabolism of tetrathionate by isolate AL 2 involved initial anaerobic hydrolysis to form sulphur, thiosulphate and sulphate in a sequence similar to that in other colourless sulphur-oxidizing bacteria. Sulphate was produced by both strains. During batch growth on thiosulphate, elemental sulphur and sulphite transiently accumulated in cultures of isolates AL 2 and AL 3, respectively. At lower pH values, both strains accumulated sulphur during sulphide and thiosulphate oxidation. Both strains contained ribulose bisphosphate carboxylase. Thiosulphate oxidation in isolate AL 3 appeared to be sodium ion-dependent. Isolate AL 2 differed from AL 3 by its high GC mol % value (65.5 and 49.5, respectively), sulphur deposition in its periplasm, the absence of carboxysomes, lower sulphur-oxidizing capacity, growth kinetics (lower growth rate and higher growth yield) and cytochrome composition.  相似文献   

13.
Several metabolic types of sulphate-reducing bacteria, including mesophiles and thermophiles, were successfully obtained from four samples from two different North Sea oil fields. The Gram-negative, rod-shaped, sulphate-reducing strains MM6, EF2, FM2, and GF2 were isolated from drain water, and from drilling muds E, F, and G, respectively. All four isolates grew on lactate, pyruvate, glycerol, and ethanol, with optimal growth temperatures between 25 degrees C and 35 degrees C and at salinities between 0 and 5% NaCl. They were capable of using sulphate, thiosulphate or sulphite, but not nitrate, as electron acceptors. These isolates were tentatively identified to be the same species of Desulfomicrobium based on physiological and biochemical characterization, and 16S rRNA gene analysis. Therefore, the same Desulfomicrobium species was present in different samples from distant oil fields. This result suggests that these microorganisms are likely to be widespread throughout oil field systems, and possibly play an important role in the generation of sulphide.  相似文献   

14.
Sulphate uptake byCandida utilis follows Michaelis-Menten type kinetics characterized by a Km of 1.43 mM for sulphate. The process is unidirectional, pH, temperature and energy dependent. Molybdate, selenate, thiosulphate, chromate and sulphite are competitive inhibitors. Dithionite is a mixed-type inhibitor of sulphate uptake. If cells are pre-incubated with sulphate, sulphite, thiosulphate, dithionite or sulphide, sulphate uptake is severely blocked. Inhibition by endogenous sulphate, sulphite and thiosulphate was specific for sulphate uptake. Thus, incorporation of extracellular sulphate seems to be under the control of a heterogeneous pool of sulphur compounds. These results are discussed in connection with the regulation of sulphur ammo acid biosynthesis inC.utilis.  相似文献   

15.
Abstract Addition of pyrophosphate stimulated sulphate uptake and utilization of volatile fatty acids by anaerobic freshwater sediments. Population estimates of sulphate-reducing bacteria demonstrated that a larger number were capable of utilizing acetate then lactate. Estimates increased when pyrophosphate was added to the medium and decreased by the same degree when the sediment was heated. Addition of molybdate to the sulphate-limited sediments stimulated rather than inhibited methanogenesis. The results suggest that the sediment contains a metabolically active population of acetate-utilizing members of the genus Desulfotomaculum .  相似文献   

16.
玉米幼苗根际土壤微生物活性对芘污染的响应   总被引:1,自引:0,他引:1  
许超  夏北成 《生态学报》2010,30(5):1296-1305
用根际袋法土培试验研究了玉米幼苗根际与非根际土壤微生物量碳、微生物熵、代谢熵和土壤酶活性对不同芘污染水平(50、200、800mg·kg-1,记为T1、T2、T3)的响应差异。结果表明,较低浓度芘可适当的刺激玉米幼苗的生长,而较高浓度芘则抑制幼苗生长,其抑制作用随芘处理浓度的提高而增强;芘对玉米根系的影响要大于对茎叶的影响。玉米幼苗能够明显促进土壤中芘的去除。根际和非根际土壤中芘的去除率分别为56.67%-76.18%和32.64%-70.44%,根际土壤中芘的平均去除率比非根际土壤高16.06%。同处理中根际土壤芘含量显著低于非根际土壤,随着芘处理浓度的提高其差异更加显著。根际土壤微生物量碳、微生物熵、多酚氧化酶活性、脱氢酶活性和磷酸酶活性均高于非根际土壤,代谢熵低于非根际土壤,且其差异随芘处理浓度的提高而增大。在不同芘污染水平下,微生物量碳、微生物熵和脱氢酶活性根际和非根际土壤为T1T2T3,代谢熵为T3T2T1;多酚氧化酶活性根际土壤为T2T1T3,非根际土壤为T1T2T3;磷酸酶活性根际土壤为T3T1T2,非根际土壤为T1T2T3。土壤中残余芘含量与土壤微生物量碳、微生物熵、多酚氧化酶、脱氢酶和磷酸酶活性呈显著负相关,与代谢熵呈显著正相关。  相似文献   

17.
Viable counts of sulphate-reducing bacteria, able to use a range of different growth substrates were determined in sediments from two Sea Lochs (Etive and Eil) and an estuarine site (Tay), in Scotland. The composition of the sulphate-reducing bacterial population, in terms of substrate utilization, broadly corresponded to the in situ substrates for sulphate reduction and concentration of substrates at each site. Addition of acetate, lactate, propionate, butyrate, hydrogen and glutamate/serine (20 mM) to replicate slurries from each site resulted in stimulation of the corresponding population of sulphate-reducing bacteria and the in situ rates of sulphate reduction. The metabolism of the added substrates and changes in bacterial phospholipid fatty acids (PLFA) were quantified. With the exception of acetate and hydrogen, added substrates were incompletely oxidised, producing a mixture of further substrates, which predominantly were sequentially oxidised, and resulted in the stimulation of a mixed population of sulphate-reducing bacteria. There were significant changes in the PLFA of slurries with added substrate compared to controls. Acetate was completely removed at all sites and the small increase in even chain PLFA together with the absence of stimulation of any other biomarker, indicated that acetate was oxidised by sulphate-reducing bacteria distinctly different from those using other substrates. A biomarker for Desulfobacter, 10 Methyl 16:0, was not stimulated in any of the acetate slurries or in slurries where acetate was produced. Biomarkers for the propionate utilizing Desulfobulbus sp (17:1w6, 15:1w6) were always stimulated in propionate slurries and also in lactate slurries, where partial lactate fermentation produced propionate and acetate. In lactate and glutamate / serine slurries from the Tay estuary and lactate and hydrogen slurries from Loch Etive the biomarker for Desulfovibrio sp (i17:1w7) as well as those for Desulfobulbus were stimulated. This provides direct evidence for the significance of Desulfovibrio sp. within sediment slurries and demonstrates the competitive interaction between members of this genus and Desulfobulbus sp. for lactate, hydrogen and amino acid metabolism. At the estuarine site, sulphate reduction was limited at higher sulphate concentrations (about 3.5 mM) than the Sea Loch sites (<2 mM) and this had a significant effect on propionate and butyrate metabolism, as well as on methane production. These results demonstrate that although the sulphate-reducing bacterial population at each site could metabolise identical substrates, the types of sulphate-reducing bacteria involved and their sulphate thresholds were characteristically different.  相似文献   

18.
The bacteria of the sulphur cycle   总被引:5,自引:0,他引:5  
This paper concentrates on the bacteria involved in the reductions and oxidations of inorganic sulphur compounds under anaerobic conditions. The genera of the dissimilatory sulphate-reducing bacteria known today are discussed with respect to their different capacities to decompose and oxidize various products of fermentative degradations of organic matter. The utilization of molecular hydrogen and formate by sulphate reducers shifts fermentations towards the energetically more favourable formation of acetate. Since acetate amounts to about two-thirds of the degradation products of organic matter, the complete anaerobic oxidation of acetate by several genera of the sulphate-reducing bacteria is an important function for terminal oxidation in sulphate-sufficient environments. The results of pure culture studies agree well with ecological investigations of several authors who showed the significance of sulphate reduction for the complete oxidation of organic matter in anaerobic marine habitats. In the dissimilatory sulphur-reducing bacteria of the genus Desulfuromonas the oxidation of acetate is linked to the reduction of elemental sulphur. Major characteristics of the anaerobic, sulphide-oxidizing phototrophic green and purple sulphur bacteria as well as of some facultative anoxygenic cyanobacteria, are given. By the formation of elemental sulphur and sulphate, these bacteria establish sulphur cycles with the sulphide-forming bacteria. In view of the morphological diversity of the sulphate-reducing bacteria and question of possible evolutionary relations to phototrophic sulphur bacteria is raised.  相似文献   

19.
Feasibility of thermophilic (55 degrees C) sulphate and sulphite reduction with H(2) and CO(2) gas-mixtures was studied in gas-lift reactors, which contained pumice particles as carrier material. Particular attention was paid to biomass retention and the competition between hydrogenotrophic sulphate-reducers and other hydrogenotrophic thermophiles. A model medium with defined mineral nutrients was used.The results of the experiments clearly demonstrate that sulphate conversion rates up to 7.5 g SO(4) (2-)/L per day can be achieved. With sulphite, a reduction rate of 3.7 g S/L per day was obtained, which equals a sulphate conversion rate of 11.1 g SO(4) (2-)/L per day. Under the applied conditions, a strong competition for hydrogen between hydrogenotrophic sulphate-reducers, tentatively designated as Desulfotomaculum sp., and hydrogenotrophic methanogens was observed. The outcome of the competition could not be predicted. Growth of the mixed culture was totally inhibited at an H(2)S concentration of 250 mg/L. Poor attachment of sulphate-reducing bacteria was observed in all experiments. The biomass concentration did not exceed 1.2 g/L, despite the presence of 50 g/L of pumice. The reason for this phenomenon remains to be understood. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 807-814, 1997.  相似文献   

20.
Response of conifer seedlings to nitrate and ammonium sources of nitrogen   总被引:3,自引:0,他引:3  
Summary Differences in growth responses of Douglas fir, western hemlock, Sitka spruce, and white spruce to nitrate and ammonium N sources were examined in sand culture and artificial soil culture. Effects of the two forms of N on growth, needle area, and N uptake of three Douglas fir halb-sib progenies were examined in a second sand culture. Response of Douglas fir to the two forms of N was followed over two years in nursery soil of different pH levels. In sand culture 1 mean seedling dry weight of all species, except hemlock, was greatest when ammonium N and nitrate N were provided in equal amounts. In all species, except Sitka spruce, ammonium alone resulted in greater growth than nitrate alone. Use of ammonium N resulted in greater growth of all species, than was obtained with nitrate N, at pH values in the region 5.4 and 7.5 in artificial soil culture. Only Douglas fir showed substantial differences due to N source below pH 5. Growth of all species was greater at pH 5.4 than at 7.5 in each N source treatment. Growth of Douglas fir seedlings was greatest with ammonium N and least with nitrate N in sand culture 2. Supply of nitrate and ammonium in equal proportions resulted in intermediate growth. Leaf area/plant weight ratio was unaffected by N source. Analysis of nutrient solutions showed appreciable nitrification of ammonium N during the 7 days between solution changes. In the three greenhouse experiments, with little exception, increase in proportion of ammonium in N supply resulted in increase of seedling tissue N concentration. This effect was more pronounced in roots than shoots. Total N uptake by ammonium fed seedlings was about double the N uptake of nitrate fed seedlings in sand culture 2. Nursery grown Douglas fir seedlings showed greater growth response to ammonium sulphate than to calcium nitrate, and this appeared due entirely to form of N supply in the first year. A similar response in the second year was partly due to greater soil acidification by ammonium sulphate. Compared with calcium nitrate, ammonium sulphate increased N concentration of one-year old shoots, but this difference was not detected by foliar analysis of two-year old seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号