首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Circadian clocks are endogenous approximately 24 h oscillators that temporally regulate many physiological and behavioural processes. In order to be beneficial for the organism, these clocks must be synchronized with the environmental cycles on a daily basis. Both light : dark and the concomitant daily temperature cycles (TCs) function as Zeitgeber (‘time giver’) and efficiently entrain circadian clocks. The temperature receptors mediating this synchronization have not been identified. Transient receptor potential (TRP) channels function as thermo-receptors in animals, and here we show that the Pyrexia (Pyx) TRP channel mediates temperature synchronization in Drosophila melanogaster. Pyx is expressed in peripheral sensory organs (chordotonal organs), which previously have been implicated in temperature synchronization. Flies deficient for Pyx function fail to synchronize their behaviour to TCs in the lower range (16–20°C), and this deficit can be partially rescued by introducing a wild-type copy of the pyx gene. Synchronization to higher TCs is not affected, demonstrating a specific role for Pyx at lower temperatures. In addition, pyx mutants speed up their clock after being exposed to TCs. Our results identify the first TRP channel involved in temperature synchronization of circadian clocks.  相似文献   

2.
Mechanisms that couple protein turnover to cell cycle progression are critical for coordinating the events of cell duplication and division. Despite the importance of cell cycle-regulated proteolysis, however, technologies to measure this phenomenon are limited, and typically involve monitoring cells that are released back into the cell cycle after synchronization. We describe here the use of laser scanning cytometry (LSC), a technical merger between fluorescence microscopy and flow cytometry, to determine cell cycle-dependent changes in protein stability in unperturbed, asynchronous, cultures of mammalian cells. In this method, the ability of the LSC to accurately measure whole cell fluorescence is employed, together with RNA fluorescence in situ hybridization and immunofluorescence, to relate abundance of a particular RNA and protein in a cell to its point at the cell cycle. Parallel monitoring of RNA and protein levels is used, together with protein synthesis inhibitors, to reveal cell cycle-specific changes in protein turnover. We demonstrate the viability of this method by analyzing the proteolysis of two prominent human oncoproteins, Myc and Cyclin E, and argue that this LSC-based approach offers several practical advantages over traditional cell synchronization methods.  相似文献   

3.
The changes in intrinsic fluorescence parameters induced by thermal transitions in proteins are developed on the background of the common thermal fluorescence quenching due to an activation of collisions between the excited chromophores and neighbouring quenching groups. Two methods of separation of the thermai quenching and conformational change contributions to the temperature dependence of the fluorescence parameters are presented. One is based on the use of the linearity of the plots of the reciprocal fluorescence quantum yield, l/q, vs. the t/η ratio (T. temperature; η, solvent viscosity) for native proteins containing a single fluorescing chromophore (T.L. Bushueva, E.P. Busel and E.A. Burstein, Biochim. Biophys. Acta 534 (1978) 141). The other method is based on a consideration of the phase plots for the tryptophan fluorescence of proteins (fluorescence intensity at a fixed wavelength vs. intensity at any other fixed wavelength). The methods have been used for a study of the thermal transitions in Mg2+-loaded whiting parvalbumin (tryptophan fluorescence), Mg2+-loaded pike parvalbumins pI 4.2 (tyrosine fluorescence) and pI 5.0 (phenylalanine fluorescence), and Ca2+-loaded bovine α-lactalbumin (tryptophan fluorescence). The thermal denaturation curves for the parvalbumins show two-stepped character. The main change of the protein conformation occurs at the higher temperature step. Comparison of the fluorescence data with the microcalorimetry results shows that the maxima of the asymmetric heat sorption peaks for pike parvalbumins correlate with the mid-points of the higher temperature steps of the fluorimetric curves.  相似文献   

4.
The kinetics of chlorophyll fluorescence at 77 K were studied in Chlorella cells and spinach chloroplasts.During a first illumination, the rise is polyphasic with at least three phases. The slowest one is irreversible and corresponds to the cytochrome oxidation.The dark regeneration of half the variable fluorescence is biphasic, the fast phase being inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) both in Chlorella and chloroplasts.The fluorescence rise during a second illumination is still biphasic.Carbonyl cyanide m-chlorophenylhydrazone (CCCP) slows down the fluorescence rise in Chlorella but has no effect on the dark regeneration. It does not affect the fluorescence of chloroplasts.Ferricyanide which oxidizes cytochrome b-559 at room temperature produces a quenching of the variable fluorescence and an acceleration of the fluorescence rise during the first illumination.Our results fit the idea of the heterogeneity of the Photosystem II centers at low temperature.  相似文献   

5.
The temperature dependence of the rate and magnitude of the reappearance of photosystem II (PSII) variable fluorescence following illumination has been used to determine plant temperature optima. The present study was designed to determine the effect of a plant's environmental history on the thermal dependency of the reappearance of PSII variable fluorescence. In addition, this study further evaluated the usefulness of this fluorescence technique in identifying plant temperature optima. Laboratory and greenhouse grown potato (Solanum tuberosum L. cv “Norgold M”) plants had a thermal kinetic window between 15 and 25°C. The minimum apparent Km of NADH hydroxypyruvate reductase for NADH occurred at 20°C. This temperature was also the temperature providing maximal reappearance of variable fluorescence. Soybean (Glycine max [L.] Merrill cv “Wayne”) plants had a thermal kinetic window between 15 and 30°C with a minimum apparent Km at 25°C. Maximal reappearance of variable fluorescence was seen between 20 and 30°C. To determine if increasing environmental temperatures increased the temperature optimum provided from the fluorescence response curves, potato and soybean leaves from irrigated and dryland field grown plants were evaluated. Although the absolute levels of PSII variable fluorescence declined with increasing thermal stress, the temperature optimum of the dryland plants did not increase with increased exposure to elevated temperatures. Because of variability in the daily period of high temperature stress in the field, studies were initiated with tobacco plants grown in controlled environment chambers. The reappearance of PSII variable fluorescence in tobacco (Nicotiana tabacum L. cv “Wisconsin 38”) leaves that had experienced continuous leaf temperatures of 35°C for 8 days had the same 20°C optima as leaves from plants grown at room temperature. The results of this study suggest that the temperature optimum for the reappearance of variable fluorescence following illumination is not altered by the plant's previous exposure to variable environmental temperatures. These findings support the usefulness of this procedure for the rapid identification of a plant's temperature optimum.  相似文献   

6.
7.
The structural stability of phaseolin was determined by using absorbance, circular dichroism (CD), fluorescence emission, and fluorescence polarization anisotropy to monitor denaturation induced by urea, guanidinium chloride (GdmCl),pH changes, increasing temperature, or a combination thereof. Initial results indicated that phaseolin remained folded to a similar extent in the presence or absence of 6.0 M urea or GdmCl at room temperature. In 6.0 M GdmCl, phaseolin denatures at approximately 65°C when probed with absorbance, CD, and fluorescence polarization anisotropy. The transition occurs at lower temperatures by decreasingpH. Kinetic measurements of denaturation using CD indicated that the denaturation is slow below 55°C and is associated with an activation energy of 52 kcal/mol in 6.0 M GdmCl. In addition, kinetic measurement using fluorescence emission indicated that the single tryptophan residue was sensitive to at least two steps of the denaturation process. The fluorescence emission appeared to reflect some other structural perturbation than protein denaturation, as fluorescence inflection occurred approximately 5°C prior to the changes observed in absorbance, CD, and fluorescence polarization anisotropy.  相似文献   

8.
The temperature threshold for the onset of irreversible loss of photosynthetic capacity of leaves was examined in studies of net CO2 exchange and by chlorophyll fluorescence techniques. Close agreement was found between the temperature threshold for a dramatic increase in the fluorescence of chlorophyll from intact leaves and the leaf temperature at which the capacity for photosynthetic CO2 fixation (measured at rate saturating light intensity by infrared gas analysis) began to be temperature unstable (i.e. decline with time of exposure to a constant temperature). This decline in CO2 uptake was not a result of a stomatal response yielding a reduced intercellular CO2 concentration at high temperature, and it is interpreted as an indication of progressive damage to some essential component(s) of the leaf. The temperature-dependent change in chlorophyll fluorescence apparently also indicated the onset of this damage. The fluorescence assay could be conducted with discs of leaves collected from remote locations and kept moist while they were transported to a central location, allowing assessment of the high temperature tolerance of leaves which developed under natural field conditions. These assays were verified using a mobile laboratory to study gas exchange of attached leaves in situ. The high temperature sensitivity of leaves of plants growing under natural conditions were similar to those of the same species grown in controlled environments of similar thermal regimes. High temperature in controlled environment studies brought about acclimation responses which increased the threshold for high temperature damage as measured by gas exchange. Studies of fluorescence versus temperature confirmed that this method could be used to quantify these responses, and permitted the kinetics of the acclimation response to be examined. Gas exchange studies, while providing similar estimates of thermal stability, required more time, more elaborate instrumentation, and are particularly difficult to conduct with field plants growing in situ.  相似文献   

9.
Triplosporium (Entomophthora) fresenii overwinters on citrus trees in Israel as zygospores which germinate in March and April by means of capillary conidiophores bearing capillispores (anadhesive conidia) in synchronization with spring buildup of Aphis spiraecola populations on citrus. The minimum temperature for zygospore germination in Israel is about 9–10°C. In the zygospore population there is variability regarding time needed to break dormancy and temperature needed for germination, which is gradual, its cumulative curve being sigmoidally shaped. Some evidence suggests that dormancy is of the endogenous type. The variability and the ability to overwinter on trees as resting spores are assumed to give T. fresenii an advantage over other Entomophthoraceae present on the same host in spring.  相似文献   

10.
If, at liquid nitrogen temperature, the initial fluorescence yield of chlorophyll a2 is high (e.g. after preillumination), a 16 μs flash produces in a few microseconds a decrease in fluorescence yield, followed by an increase, which occurs after roughly 10–20 μs, when the intensity of the flash has become negligible. It is concluded that during a flash, a quencher or quenching state T is formed, which disappears in a dark reaction in a time of the order of 10 μs. The kinetics are the same and can be interpreted in the same way as the kinetics at room temperature earlier reported by Duysens et al. (Abstr. VI. Int. Congr. on Photobiol. Bochum 1972, No. 277).If the flash is given when the initial fluorescence yield is low, then the fluorescence yield increases only markedly at the end of the flash, when the intensity has become low. Even for a strong flash, the increase is only about 20% of the maximum increase attained after a large number of flashes. This indicates that at low temperature, in contradistinction to room temperature, the reduction of the primary oxidant Q is less efficient than the formation of the quencher T. For the interpretation of the experiments it was not necessary to introduce other light-induced quenchers than T, such as the oxidized primary reductant, P+.  相似文献   

11.
The effect of supraoptimal temperature on macronuclear DNA synthesis in Tetrahymena was studied by radioautography during prolonged heat and heat-shock synchronization treatments. Prolonged heat treatments (34°C) delayed the initiation of S, but did not appreciably delay DNA synthesis in progress. Return to optimal temperature (28°C) 50 or 100 min later resulted in initiation of S, in delayed cells, at a rate greater than in controls. During the synchronization treatment, most cells were unable to enter S during a heat shock, but initiated S with a slight delay during the following intershock period. These cells were not appreciably delayed in completion of S by subsequent heat shocks. Supraoptimal temperature appears to affect the DNA synthetic cycle near the G1 to S transition. Cells subjected to the heat-shock treatment in early G1 all participated in one S period, and many underwent a succession of two S periods. DNA synthesis occurred in about 50% of the cells between EST and the first synchronous division, with the likelihood of DNA synthesis becoming greater the longer the interval between these two events. In some cells no detectable DNA synthesis occurred between EST and the second synchronous division. It was concluded that a precise temporal alternation of DNA replication and cell division is not obligatory in Tetrahymena.  相似文献   

12.
The kinetics of the photoreduction of C-550, the photooxidation of cytochrome b559 and the fluorescence yield changes during irradiation of chloroplasts at ?196 °C were measured and compared. The photoreduction of C-550 proceeded more rapidly than the photooxidation of cytochrome b559 and the fluorescence yield increase followed the cytochrome b559 oxidation. These results suggest that fluorescence yield under these conditions indicates the dark reduction of the primary electron donor to Photosystem II, P680+, by cytochrome b559 rather than the photoreduction of the primary electron acceptor.The photoreduction of C-550 showed little if any temperature dependence over the range of ?196 to ?100 °C. The amount of cytochrome b559 photooxidized was sensitive to temperature decreasing from the maximal change at temperatures between ?196 to ?160 °C to no change at ?100 °C. To the extent that the reaction occurred at temperatures between ?160 and ?100 °C the rate was largely independent of temperature. The rate of the fluorescence increase was dependent on temperature over this range being 3–4 times more rapid at ?100 than at ?160 °C. At ?100 °C the light-induced fluorescence increase and the photoreduction of C-550 show similar kinetics. The temperature dependence of the fluorescence induction curve is attributed to the temperature dependence of the dark reduction of P680+.The intensity dependence of the photoreduction of C-550 and of the photooxidation of cytochrome b559 are linear at low intensities (below 200 μW/cm2) but fall off at higher intensities. The failure of reciprocity in the photoreduction of C-550 at the higher intensities is not explained by the simple model proposed for the Photosystem II reaction centers.  相似文献   

13.
Leaflets of Sphagnum capillifolium were exposed to temperatures from ?5°C to +60°C under controlled conditions while mounted on a microscope stage. The resultant cytological response to these temperature treatments was successfully monitored using a light and fluorescence microscope. In addition to the observable cytological changes during freezing cytorrhysis and heat exposure on the leaflets, the concomitant critical temperature thresholds for inactivation of photosystem II (PS II) were studied using a micro fibre optic and a chlorophyll fluorometer mounted to the microscope stage. Chlorophyllous cells of S. capillifolium showed extended freezing cytorrhysis immediately after ice nucleation at ?1.1°C in the water in which the leaflets were submersed during the measurement. The occurrence of freezing cytorrhysis, which was visually manifested by cell shrinkage, was highly dynamic and was completed within 2 s. A total reduction of the mean projected diameter of the chloroplast containing area during freezing cytorrhysis from 8.9 to 3.8 μm indicates a cell volume reduction of approximately ?82%. Simultaneous measurement of chlorophyll fluorescence of PS II was possible even through the frozen water in which the leaf samples were submersed. Freezing cytorrhysis was accompanied by a sudden rise of basic chlorophyll fluorescence. The critical freezing temperature threshold of PS II was identical to the ice nucleation temperature (?1.1°C). This is significantly above the temperature threshold at which frost damage to S. capillifolium leaflets occurs (?16.1°C; LT50) which is higher than observed in most higher plants from the European Alps during summer. High temperature thresholds of PS II were 44.5°C which is significantly below the heat tolerance of chlorophyllous cells (49.9°C; LT50). It is demonstrated that light and fluorescence microscopic techniques combined with simultaneous chlorophyll fluorescence measurements may act as a useful tool to study heat, low temperature, and ice-encasement effects on the cellular structure and primary photosynthetic processes of intact leaf tissues.  相似文献   

14.
The fluorescence intensity of trans-parinaric acid as a function of the temperature indicates a phase transition in bovine heart mitochondrial inner membranes below 0°C. The comparison of the dye fluorescence intensity in intact inner mitochondrial membranes and in vesicles from extracted phospholipids of mitochondria revealed a similar intensity increase with decreasing temperature. A synthetic phospholipid system of dioleoyl phosphatidylcholine was investigated because of its low phase transition temperature and showed a very definite intensity change at ?25°C. trans-Parinaric acid in membrane systems probes an environment of intermediate polarity; this was found from the excitation and emission spectra and from fluorescence decay.  相似文献   

15.
16.
Peter Horton  Neil R. Baker 《BBA》1980,592(3):559-564
Fluorescence induction at ?196°C has been monitored in chloroplasts rapidly frozen after poising at different redox potentials at room temperature. It was found that, as at room temperature, the initial level of fluorescence observed upon shutter opening (Fo), relative to the final level observed after 10 seconds of illumination (Fm) increased as the redox potential of the chloroplasts was lowered. Redox titration revealed the presence of two quenching components with Em,7.8 at ?70 mV and ?275 mV accounting for approx. 75% and 25% of the variable fluorescence (Fv). Parallel observation of fluorescence yield at room temperature similarly gave two components, with Em,7.8 at ?95 mV and ?290 mV, also accounting for approx. 75% and 25%. Simultaneous measurement of fluorescence emission at ?196°C at 695 nm and 735 nm indicated that both emissions are quenched by the same redox components.  相似文献   

17.
A method for the accurate determination of the melting temperature (Tm) of surface-immobilized DNA duplexes that exploits the fluorescence-quenching properties of gold is reported. A thiolated single-stranded DNA probe is chemisorbed onto a gold surface and then hybridized to a fluorophore-labeled complementary sequence. On formation of the duplex, the fluorescence of the label is effectively quenched by the gold surface. As the temperature is increased and the duplex denatures, the fluorophore label moves away from the gold surface and the fluorescence signal is again observed. The increase in fluorescence is measured as the temperature is ramped, and using first-derivative plots, the Tm is determined. To demonstrate the approach, the Tm of the cystic fibrosis DF508 mutation was determined in three different phases: in solution, in suspension immobilized on gold nanoparticles, and immobilized on gold film-coated substrate. The technique was further applied to optimize conditions for differentiation between a surface-immobilized DF508 mutant probe and a mutant/wild-type target exploiting increasing stringency in varying salt and formamide concentrations. The approach has application in optimization of assay conditions for biosensors that use gold substrates as well as in melting curve analysis.  相似文献   

18.
Studies to determine the population fluctuation of Diaphorina citri, vector of Candidatus Liberibacter sp., have been carried out mainly in commercial plantations, whereas less have focused in urban areas and their synchrony. The objectives of this work were to monitor D. citri adult populations in Murraya paniculata (OJ) in urban areas and in Persian lime (LM) orchards, to estimate the effect of some environmental factors and to evaluate the synchronization between these populations. Sampling was performed from September 2012 to August 2014 in Veracruz, México. Five urban areas and five commercial Persian lime plots close to each other were selected. Adult D. citri catches were made monthly with yellow traps. Vegetative shoots, temperature and relative humidity were measured throughout the sampling period. Adults of Diaphorina citri were captured in all the sampling sites throughout the two-years sampling period and the populations were more abundant in summer. Significant factors affecting trap catches were the presence of new shoots and temperature. Temperature and relative humidity enclosed a comfort zone between 26 and 28?°C and 75 to 85% respectively. Cross-correlation values were positive across hosts within the same locations and between locations, regardless of the distance, thus suggesting a spatial synchronization in trap catches. This spatial relationship represents a risk of infestation between host species because of the potential movement and dispersal.  相似文献   

19.
The membrane-bound proteins of barley (Hordeum vulgare L. cv Conquest) root plasma membrane-enriched microsomes displayed fluorescence typical of protein-associated trytophan residues. The protein fluorescence intensity was sensitive to variations in sample temperature. The temperature-induced decline in protein fluorescence intensity was nonlinear with slope discontinuities at about 12 and 32°C. Detergents at levels above their critical micelle concentration enhanced protein fluorescence. Glutaraldehyde reduced protein fluorescence. Protein fluorescence polarization increased at temperatures above 30°C. Both the rate of tryptophan photoionization and the fluorescence intensity of the photoionization products suggested alterations in membrane protein conformation between 12 and 32°C. The quenching of the intrinsic protein fluorescence by acrylamide and potassium iodide indicated changes in accessibility of the extrinsic agents to the protein tryptophan residues beginning at about 14°C. The results indicate thermally induced changes in the dynamics of the membrane proteins over the temperature range of 12 to 32°C which could account for the complex temperature dependence of the barley root plasma membrane ATPase.  相似文献   

20.
Drought is one of the major constraints limiting crop productivity in African Sahel. The aim of this study was to select mutant sesame (Sesamum indicum L.) lines with improved levels of drought resistance. Twenty-one M4-M5 sesame lines of unknown drought tolerance, and their three parental sources with well-known and contrasting drought tolerance levels were evaluated at the vegetative stage in a factorial pot experiment, using a completely randomized design with three replicates. After 2 weeks of growth, water was withheld for 16 days as drought stress treatment. Chlorophyll a fluorescence data, as well as stomatal conductance and flag leaf temperature were recorded during the stress period. Recorded chlorophyll a fluorescence transients were analyzed by the JIP-test to translate stress-induced damage in these transients to changes in biophysical parameters allowing quantification of the energy flow through the photosynthetic apparatus. Large genotypic differences in the extent to which drought stress affected chlorophyll a fluorescence transients were observed. Drought stress reduced the performance index and stomatal conductance, and increased flag leaf temperature but had little effect on maximum quantum yield of primary photochemistry. A drought factor index is proposed in this work to screen for improved drought tolerance in twenty-one M4-M5 sesame lines. Mutant lines shi165, lc162, mc112, lc164, icn115, icn141, mt169, dwf172 and cc102 exhibited drought factor index values superior to those of the known drought tolerant cultivars Birkan and 38-1-7. A significant and negative relationship was found between the drought factor index and the leaf temperature index. Finally, we succeeded in obtaining drought tolerant lines with good secondary traits by using mutagenesis and chlorophyll fluorescence technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号