首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The levels of adenosine 3′,5′-monophosphate, guanosine 3′-5′-monophosphate and the activities of their respective phosphodiesterases exhibited changes during development ofMyxococcus xanthus that are substantially consistent with role postulated for each in a previously proposed model.  相似文献   

2.
3.
Cyclic nucleotide phosphodiesterase activity (3', 5'-cyclic-nucleotide 5'-nucleotidohydrolase, 3.1.2.17) was studied in homogenates of WI-38 human lung fibroblasts using 0.1--200 microgram cyclic nucleotides. Activities were observed with low Km for cyclic AMP(2--5 micron) and low Km for cyclic GMP (1--2 micron) as well as with high Km values for cyclic AMP (100--125 micron) and cyclic GMP (75--100 micron). An increased low Km cyclic AMP phosphodiesterase activity was found upon exposure of intact fibroblasts to 3-isobutyl-1-methylxanthine, an inhibitor of phosphodiesterase activity in broken cell preparations, as well as to other agents which elevate cyclic AMP levels in these cells. The enhanced activity following exposure to 3-isobutyl-1-methylxanthine was selective for the low Km cyclic AMP phosphodiesterase since there was no change in activity of low Km cyclic GMP phosphodiesterase activity or in high Km phosphodiesterase activity with either nucleotide as substrate. The enhanced activity due to 3-isobutyl-1-methylxanthine appeared to involve de novo synthesis of a protein with short half-life (30 min), based on experiments involving cycloheximide and actinomycin D. This activity was also enhanced with increased cell density and by decreasing serum concentration. Studies of some biochemical properties and subcellular distribution of the enzyme indicated that the induced enzyme was similar to the non-induced (basal) low Km cyclic AMP phosphodiesterase.  相似文献   

4.
Broken cell preparations of WI-38 and SV40-transformed WI-38 (VA13) fibroblasts were used to compare the cyclic nucleotide phosphodiesterase activities of the two cell strains. The bulk of the cAMP or cGMP phosphodiesterase activity of WI-38 and VA13 homogenates was found in the 100,000 x g fibroblast supernatant fractions. WI-38 and VA13 soluble phosphodiesterase activities showed anomalous kinetic behavior with either cAMP or cGMP as the substrate. At low substrate concentrations, e.g., 0.1 muM, WI-38 supernatant fractions hydrolyzed cGMP much more rapidly than cAMP. At high substrate concentrations, e.g., 100muM, the same enzyme preparations degraded cAMP more than twice as fast as cGMP. In contrast, VA13 soluble phosphodiesterase activity catalyzed the hydrolysis of a wide range of cAMP and cGMP concentrations at similar rates. Phosphodiesterase activity in WI-38 supernatant fractions was generally more sensitive than that of the comparable VA13 enzyme activity to inhibition by MIX and papaverine. The cAMP phosphodiesterase activity of both WI-38 and VA13 supernatant preparations was decreased by cGMP in a concentration-dependent manner. cAMP was an effective inhibitor of cGMP hydrolysis by VA13 soluble phosphodiesterase activity. Yet, the cGMP phosphodiesterase activity of WI-38 supernatant fractions was only slightly reduced in the presence of cAMP. DEAE-cellulose chromatography of WI-38 and VA13 supernatant preparations revealed two major peaks of phosphodiesterase activity for each cell type. WI-38 peak I showed much greater activity with 1muM cGMP than with 1muM cAMP and appeared to be composed of two different phosphodiesterase activities. WI-38 peak Ia included phosphodiesterase activity which could be stimulated by boiled, dialyzed fibroblast homogenates while WI-38 peak Ib coincided with column fractions which contained most of the cyclic GMP hydrolytic activity. VA13 peak I phosphodiesterase activity was eluted from DEAE cellulose columns at the same ionic strength as WI-38 peak Ia and hydrolyzed these two substrates at nearly identical rates. This enzyme activity was also increased in the presence of boiled, dialyzed fibroblast preparations. Peak II phosphodiesterase activities from both WI-38 and VA13 fibroblasts were relatively specific for cAMP as the substrate. Phosphodiesterase activity with the properties of WI-38 peak Ib was not isolated from VA13 supernatant fractions. These results suggested that the dissimilar patterns of cAMP accumulation in WI-38 and VA13 cultures may be at least partially related to different phosphodiesterase activities in the normal and the transformed fibroblasts.  相似文献   

5.
1. Supernatant fluids from rat cerebral cortex, cerebellum, kidney, heart and liver contained more phosphodiesterase activity hydrolysing cyclic GMP than that hydrolysing cyclic AMP when assayed with sub-saturating concentrations of substrate. 2. These activities were resolved into several fractions by Sephadex G-200 gel filtration; no two tissues had similar activity profiles. 3. With every tissue examined, a fraction (fraction II) with a molecular weight of about 150,000 was obtained which hydrolysed cyclic GMP preferentially at sub-saturating substrate concentrations in the presence of micromolar concentration of Ca2+, millimolar concentration of Mg2+ and a protein activator. 4. The activity of fraction II accounted for about 60 percent in liver, more than 80 percent in heart and cerebellum, and almost 100 percent in cerebral cortex of the total activity for cyclic GMP hydrolysis, calculated from the activity profiles. 5. Km values of fraction II samples from kidney, heart and liver for cyclic GMP were 1.3, 1.7 and 5 muM respectively. 6. 3-Isobutyl-1-methylxanthine inhibited hydrolysis of cyclic GMP by fraction II with an I50 value of 3muM for heart and liver and 50 muM for cerebrum. 7. The activator protein, with an estimated molecular weight of about 30,000 was isolated from all the tissues listed in 1.8. The concentrations of activator protein and of the isolated enzyme, fraction II, did not correspond exactly.  相似文献   

6.
1. Several calmodulin derivatives prepared by chemical modification of lysine residues were tested using bovine heart cyclic nucleotide phosphodiesterase and wheat germ calmodulin-dependent protein kinase. 2. The effect of chemical modification on the activation capacity of calmodulin for the two studied enzymes was different. 3. This was particularly noticeable in the case of alkylated derivatives which exhibited a higher affinity than native calmodulin towards phosphodiesterase but a lower affinity towards protein kinase. 4. The efficiency of these derivatives (maximal activation) was higher than that of native calmodulin in relation with the protein kinase.  相似文献   

7.
The complete amino acid sequence of the cyclic GMP stimulated cyclic nucleotide phosphodiesterase (cGS-PDE) of bovine heart has been determined by analysis of five digests of the protein; placement of the C-terminal 330 residues has been confirmed by interpretation of the corresponding partial cDNA clone. The holoenzyme is a homodimer of two identical N alpha-acetylated polypeptide chains of 921 residues, each with a calculated molecular weight of 103,244. The C-terminal region, residues 613-871, of the cGS-PDE comprises a catalytic domain that is conserved in all phosphodiesterase sequences except those of PDE 1 from Saccharomyces cerevisiae and a secreted PDE from Dictyostelium. A second conserved region, residues 209-567, is homologous to corresponding regions of the alpha and alpha' subunits of the photoreceptor phosphodiesterases. This conserved domain specifically binds cGMP and is involved in the allosteric regulation of the cGS-PDE. This regulatory domain contains two tandem, internal repeats, suggesting that it evolved from an ancestral gene duplication. Common cyclic nucleotide binding properties and a distant structural relationship provide evidence that the catalytic and regulatory domains within the cGS- and photoreceptor PDEs are also related by an ancient internal gene duplication.  相似文献   

8.
Adenyl cyclase and cyclic nucleotide phosphodiesterase activities were assayed in homogenates of hind leg skeletal muscle from dystrophic and normal mice. Adenyl cyclase activity was stimulated 2.5 times by epinephrine and 6 times by fluoride over the basal activity in both dystrophic and normal mice. The activity of adenyl cyclase from dystrophic muscle of mice was significantly higher than that of normal mice under all the conditions tested (i.e. basal, epinephrine and fluoride). Cyclic nucleotide phosphodiesterase from skeletal muscle of mice has two Km's (2.1 and 11 mumol/l) which suggests the existence of either two forms of enzyme or a single enzyme with negative cooperativity. The activity of this enzyme was significantly elevated in the skeletal muscle of dystrophic mice compared to the normal controls. The available evidence suggests that the same cyclic nucleotide phosphodiesterase is responsible for the hydrolysis of both cyclic AMP and cyclic GMP.  相似文献   

9.
Phospholipid methylase and cyclic nucleotide phosphodiesterase activities were studied in human B lympho?d hemopathies (51 patients: acute lymphoblastic leukemia, B lymphoma, chronic lymphocytic leukemia, hairy cell leukemia) and compared with activities in lymphoblast?d and Burkitt lymphoma cell lines and with normal B lymphocytes: methylase activity proved to be lower in ALL and high grade lymphoma and inversely related to the percent of cells in S phase state; the A/G ratio of phosphodiesterases was low in ALL and CLL and high in hairy cell leukemia and it was related to the percent of cells in S phase state.  相似文献   

10.
Calmodulin and cyclic nucleotide phosphodiesterase activities were measured in hemolysates prepared from 18 normal and 17 schizophrenic subjects. No significant difference between groups was found for either activity. The results suggest that calmodulin is present in normal amounts in patients with schizophrenia. This is compatible with the idea that the interaction of calmodulin with antipsychotic agents is structurally non-specific.  相似文献   

11.
Phosphodiesterase 3B (PDE3B), is known to play an important role in acute insulin and cAMP-mediated regulation of lipid metabolism, and PDE4 are the main PDE types expressed in adipocytes. Here, we show that members of all PDE4 isoforms are expressed in 3T3-L1 and primary mouse adipocytes. Long-term treatment of 3T3-L1 adipocytes with insulin induced up-regulation of PDE3B and PDE4D in a phosphatidylinositol 3-kinase-dependent manner whereas long-term treatment with beta-adrenergic agonists induced down-regulation of PDE3B and up-regulation of PDE4D. Thus, PDE3B and PDE4D can be added to the list of genes regulated by insulin and cAMP-increasing hormones. Altered expression of PDE3B and PDE4D in response to long-term treatment with insulin and catecholamines may contribute to altered regulation of metabolism in diabetes.  相似文献   

12.
To investigate the role of guanosine 3':5'-monophosphate (cyclic GMP) in cultured cells we have measured guanylate cyclase and cyclic GMP phosphodiesterase activities and cyclic GMP levels in normal and transformed fibroblastic cells. Guanylate cyclase activity is found almost exclusively in the particulate fraction of normal rat kidney (NRK) and BALB 3T3 cells. Enzyme activity is stimulated 3- to 10-fold by treatment with the detergent Lubrol PX. However, enhancement of guanylate cyclase by fibroblast growth factor could not be demonstrated under a variety of assay conditions. In both NRK and BALB 3T3 cells guanylate cyclase activity is low during logarithmic growth and increases as the cells crowd together and growth slows. Guanylate cyclase activity is undetectable in homogenates of NRK cells transformed by the Kirsten sarcoma virus (KNRK cells) either in the presence or absence of Lubrol PX. Guanylate cyclase activity is also greatly decreased in NRK cells transformed by Moloney, Schmidt-Ruppin, or Harvey viruses. BALB 3T3 cells transformed by RNA viruses (Kirsten, Harvey, or Moloney), by a DNA virus (SV40), by methylcholanthrene, or spontaneously, all have diminished but readily detectable guanylate cyclase activity. Cyclic GMP phosphodiesterase activity is found predominately in the soluble fraction of NRK cells. This activity increases slightly as NRK cells enter the stationary growth phase. Cyclic GMP phosphodiesterase activity is undetectable in two clones of KNRK cells under a variety of assay conditions, and is decreased relative to the level present in NRK cells in a third KNRK clone. However, both Moloney- and Schmidt-Ruppin-transformed NRK cells have a phosphodiesterase activity similar to that found in NRK cells. Boiled supernatant from both NRK and KNRK cells is observed to appreciably enhance the activity of activator-deficient phosphodiesterase from bovine heart. This result indicates that the absence of cyclic GMP phosphodiesterase activity in KNRK cells is not due to a loss of the phosphodiesterase activator. The intracellular concentration of cyclic GMP is found to be very low in transformed NRK cells when compared to levels measured in confluent NRK cells. The low levels of cyclic GMP in transformed NRK cells reflect the greatly decreased guanylate cyclase activity observed in these cells. These results do not appear to support the suggestion that cyclic GMP promotes the growth of fibroblastic cells.  相似文献   

13.
A rapid reduction of cyclic nucleotide phosphodiesterase activity occurs after the replating of confluent cultures of BHK 21 c/13 fibroblasts into fresh medium. This reduction in activity depends on the density to which the cultures are reseeded and the concentration of serum in the medium. Enzyme activity in BHK cells is restored after 24 to 48 hours if cells are diluted into medium containing 10% fetal calf serum or 0.5% fetal calf serum supplemented with insulin (10(-6)M), but not into 0.5% serum alone. The restoration in enzyme activity is blocked by cycloheximide or Actinomycin D. When BHK cells become quiescent by maintanance in 0.5% serum conditions for 48 hours, a rapid (15--60 minutes) increase in cyclic AMP phosphodiesterase activity occurs when 10% serum is added to the cultures. Enzyme activity is increased even further after 24 to 48 hours in the 10% serum. Cycloheximide or Actinomycin D do not affect the rapid increase in enzyme activity in response to serum, but completely inhibit the long term increase. In contrast to serum, insulin (10(-8) to 10(-6)M) has no short term effect, but does increase enzyme activity after 24 to 48 hours to levels comparable to those seen with addition of 10% serum. As is the case with serum, this long term effect of insulin on enzyme activity is prevented by inhibitors of protein and RNA synthesis. Kinetic analyses of cyclic AMP phosphodiesterase activity in homogenates of quiescent BHK cells indicate the presence of only high Km (congruent to 20 muM) enzyme activity. Addition of serum or insulin to quiescent cells results in the appearance of apparent low Km enzyme activity in homogenates. Sucrose gradient analysis of BHK cells displays two forms of cyclic AMP phosphodiesterase enzyme activity: a 3--4 S form and 5--6 S form. In quiescent cells, the 5--6 S form greatly predominates relative to the 3--4 S form. Addition of serum to quiescent cells results in a rapid appearance of increased 3--4 S form enzyme activity. Insulin also increases the activity of this higher affinity 3--4 S enzyme form after 24 to 48 hours in culture. The functional significance of short and long term regulation of cyclic nucleotide phosphodiesterase(s) in cells is discussed.  相似文献   

14.
A Ca2+, calmodulin-dependent protein kinase from rat brain with a MW of 640,000 phosphorylated calmodulin-sensitive phosphodiesterase from the brain cytosol. The Km of the enzyme for the phosphodiesterase was 5.0 microM and the Vmax was 212 nmol/mg/min. The amount of phosphate incorporated into the phosphodiesterase was 0.7 mol/mol subunit. Phosphorylation of the phosphodiesterase enhanced the enzyme activity by about 20% for hydrolysis of a higher concentration of cyclic AMP.  相似文献   

15.
The cytosol fraction of an extract of Xenopus laevis ovaries contains a protein inhibitor that can specifically block the activation of calmodulin-sensitive cyclic nucleotide phosphodiesterase (PDE I) found in that tissue. This inhibitor was purified by DEAE-cellulose chromatography, gel filtration on Sephacryl S-200, and affinity chromatography on calmodulin-Sepharose. It has a molecular weight of approximately 90,000, and is heat-labile and susceptible to inactivation by chymotrypsin. The inhibitor blocks calmodulin activation of cyclic nucleotide phosphodiesterases from amphibian ovary and bovine brain and of the myosin light chain kinase from rabbit smooth muscle, but does not affect the activity of a calmodulin-insensitive cyclic nucleotide phosphodiesterase. The inhibitor not only affects the activation of Xenopus PDE I and of the bovine brain phosphodiesterase by calmodulin, but also inhibits the stimulation of these enzymes by lysophosphatidylcholine. The inhibitor also acts on PDE I activated by partial tryptic proteolysis, but the enzyme fully activated by trypsin is only slightly susceptible to inhibition by this protein. The inhibition of PDE I activation caused by this ovarian factor can be reversed by adding excess amounts of calmodulin or lysophosphatidylcholine. The presence of this inhibitor provides a possible explanation for the previously observed inactivity of PDE I in vivo.  相似文献   

16.
Arachidonic acid and prostaglandin H2 elevate the levels of adenosine 3':5'-monophosphate (cyclic AMP) in Balb/c 3T3 fibroblasts. This effect was inhibited by 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid, an inhibitor of prostaglandin I2 synthase (Claesson, H.-E., Lindgren, J.A. and Hammarstr!om, S. (1977) FEBS Lett. 81, 415-418). After addition of arachidonic acid to 3T3 cultures, cellular cyclic AMP levels and growth medium concentrations of 6-ketoprostaglandin F1 alpha (degradation product of prostaglandin I2) were quantitatively determined. The stimulatory effect of exogenously-added prostaglandin I2 on cellular cyclic AMP levels was also determined. The results indicate that the endogenous production of prostaglandin I2 is sufficient to explain the stimulatory action of arachidonic acid on cyclic AMP formation in 3T3 fibroblasts.  相似文献   

17.
The effect of diamide (diazene dicarboxylic acid bis[N,N'-dimethylamide) on cyclic AMP levels and cyclic nucleotide phosphodiesterase in human peripheral blood lymphocytes was examined. In the absence of mitogenic lectins, 5 . 10(-3)-1 . 10(-4) M diamide markedly increased intracellular cyclic AMP with variable effects at higher levels. In the presence of phytohemagglutinin or concanavalin A, 5 . 10(-4) M or higher diamide concentrations consistently decreased cyclic AMP levels, usually to control levels or below, while 1 . 10(-4)-1 . 10(-5) M diamide augmented the lectin-induced rise in cyclic AMP. When intact lymphocytes were incubated with diamide, phosphodiesterase activity against both cyclic AMP and cyclic GMP, assayed in homogenates of these cells, was inhibited at concentrations as low as 1 . 10(-6) M. In contrast, when diamide was incubated with phosphodiesterase extracted from lymphocytes there was a dual effect. At low substrate concentrations and high diamide concentrations diamide was a non-competitive inhibitor of phosphodiesterase with a Ki of 1.3--2.5 mM for cyclic AMP and 3.3--10 mM for cyclic GMP. In contrast, at high substrate concentrations diamide was an 'uncompetitive' activator of phosphodiesterase activity for both cyclic AMP and cyclic GMP. The effects of diamide could be largely or completely blocked by glutathione or dithiothreitol, indicating that sulfhydryl reactivity was involved in diamide's action on lymphocyte phosphodiesterase activity and intracellular cyclic AMP levels. These data demonstrate that diamide is a phosphodiesterase inhibitor both on phosphodiesterase extracted from lymphocytes and when incubated with intact lymphocytes and that diamide may increase or decrease intracellular cyclic AMP levels depending on the concentration of diamide used.  相似文献   

18.
19.
Mitogen-activated protein (MAP) kinase is a serine/threonine-specific protein kinase which is activated in response to various mitogenic agonists (e.g., epidermal growth factor, insulin, and the tumor promoter tetradecanoyl phorbol acetate [TPA]) and requires both threonine and tyrosine phosphorylation for activity. This enzyme has recently been shown to be identical or closely related to pp42, a protein which becomes tyrosine phosphorylated in response to mitogenic stimulation. Neither the kinases which regulate MAP kinase/pp42 nor the in vivo substrates for this enzyme are known. Because MAP MAP kinase is activated and phosphorylated in response both to agents which stimulate tyrosine kinase receptors and to agents which stimulate protein kinase C, a serine/threonine kinase, we have examined the regulation and phosphorylation of this enzyme in 3T3-TNR9 cells, a variant cell line partially defective in protein kinase C-mediated signalling. In this communication, we show that in the 3T3-TNR9 variant cell line, TPA does not cause the characteristically rapid phosphorylation of pp42 or the activation and phosphorylation of MAP kinase. This defective response is not due to the absence of the MAP kinase/pp42 protein itself because both tyrosine phosphorylation of MAP kinase/pp42 and its enzymatic activation could be induced by platelet-derived growth factor in the 3T3-TNR9 cells. Thus, the defect in these variant cells apparently resides in some aspect of the regulation of MAP kinase phosphorylation. Since the 3T3-TNR9 cells are also defective with respect to the TPA-induced increase in ribosomal protein S6 kinase, these in vivo results reinforce the earlier in vitro finding that MAP kinase can regulate S6 kinase activity. These findings suggest a key role for MAP kinase in a kinase cascade cascade involved in the control of cell proliferation.  相似文献   

20.
We have investigated effects of pH on the catalytic and allosteric properties of the cGMP-stimulated cyclic nucleotide phosphodiesterase purified from calf liver. In the "activated" state, i.e., with 0.5 microM [3H]cAMP plus 1 microM cGMP or at saturating substrate concentrations (250 microM [3H]cAMP or [3H]cGMP), hydrolysis was maximal at pH 7.5-8.0 in assays of different pH. Hydrolysis of concentrations of substrate not sufficient to saturate regulatory sites and below the apparent Michaelis constant (Kmapp), i.e., 0.5 microM [3H]cAMP or 0.01 microM [3H]cGMP, was maximal at pH 9.5. Although hydrolysis of 0.5 microM [3H]cAMP increased with pH from 7.5 to 9.5, cGMP stimulation of cAMP hydrolysis decreased. As pH increased or decreased from 7.5, Hill coefficients (napp) and Vmax for cAMP decreased. Thus, assay pH affects both catalytic (Vmax) and allosteric (napp) properties. Enzyme was therefore incubated for 5 min at 30 degrees C in the presence of MgCl2 at various pHs before assay at pH 7.5. Prior exposure to different pHs from pH 6.5 to 10.0 did not alter the Vmax or cGMP-stimulated activity (assayed at pH 7.5). Incubation at high (9.0-10.0) pH did, in assays at pH 7.5, markedly increase hydrolysis of 0.5 microM [3H]cAMP and reduce Kmapp and napp. After incubation at pH 10, hydrolysis of 0.5 microM [3H]cAMP was maximally increased and was similar in the presence or absence of cGMP. Thus, after incubation at high pH, the phosphodiesterase acquires characteristics of the cGMP-stimulated form. Activation at high pH occurs at 30 degrees C but not 5 degrees C, requires MgCl2, and is prevented but not reversed by ethylenediaminetetraacetic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号