首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Angiotensin II, a potent vasoconstrictor peptide, increases free cytoplasmic Ca2+ concentration ([Ca2+]i) in vascular smooth muscle cells (VSMC) by release of nonmitochondrial Ca2+ stores and stimulates an amiloride-sensitive Na+ influx, presumably via Na+/H+ exchange. We recently have found that the angiotensin II-mediated change in VSMC intracellular pH has two components, an early rapid acidification phase and a slower recovery phase involving Na+-dependent alkalinization. In the present study, we show that the early acidification is not mediated via Na+/H+ exchange. Instead, we propose a mechanism which involves increases in [Ca2+]i and Ca2+ efflux with a subsequent rise in intracellular H+. Agonists, in addition to angiotensin II, which increase [Ca2+]i in cultured VSMC, including platelet-derived growth factor, vasopressin, and bradykinin, induce an acidification, while agonists which fail to raise [Ca2+]i do not. The time course and magnitude of agonist-stimulated 45Ca2+ efflux correlate with the acidification response. The angiotensin II concentration-response relationship for acidification and Ca2+ mobilization are similar. Furthermore, inhibition of changes in [Ca2+]i by treatment with phorbol ester, cyclic GMP, or quin2 loading prevent agonist-mediated acidification. The effects of altering extracellular [Ca2+] and [H+] on agonist-mediated intracellular acidification and H+ efflux suggest that the acidification is due to ATP-dependent unidirectional H+ influx, perhaps via the plasma membrane Ca2+-ATPase, and not to a Ca2+/H+ antiport. This agonist-mediated acidification represents a previously undescribed ionic event in VSMC activation which may be involved in excitation-response coupling.  相似文献   

2.
We have developed a simple, direct and time-resolved method to monitor ligand-induced changes in agonist affinity of the membrane-bound acetylcholine receptor. The assay is based on the quenching of fluorescence of NBD-5-acylcholine observed upon binding of this cholinergic agonist to the receptor. Under conditions of partial saturation with the fluorescent agonist, agonists and local anesthetics but not antagonists can induce an increase in affinity of the receptor for NBD-5-acylcholine. The effect is not observed with receptor fully saturated with the fluorescent agonist. The half-life of the observed change in affinity is independent of the nature of the agonist or local anesthetic applied (t1/2 approximately 60 s at 22 degrees C). We conclude that the same state transition of the receptor can be induced by two groups of cholinergic ligands that are assumed to be non-competitive with each other and to have distinctly different modes of action. The time course of the transition is reminiscent of the slow process of desensitization observed in vivo.  相似文献   

3.
4.
Functional consequences of toll-like receptor 4 polymorphisms   总被引:3,自引:0,他引:3  
Toll-like receptor 4 (TLR4) is an important pathogen recognition receptor that recognizes mainly lipopolysaccharide (LPS) of Gram-negative bacteria, but also structures from fungal and mycobacterial pathogens, as well as endogenous ligands. Two nonsynonymous polymorphisms of TLR4, Asp299Gly and Thr399Ile, have been suggested to alter the function of the receptor. Some, but not all, studies have proposed that these polymorphisms lead to reduced cytokine response and increased susceptibility to Gram-negative infections. In this review, we compare studies that assessed the effect of the Asp299Gly and Thr399Ile polymorphisms on susceptibility to Gram-negative infections and examine the phenotypic consequences of these polymorphisms. In addition, we review the geographical distribution of TLR4 polymorphisms and present a model for evolutionary pressures on the TLR4 genetic make-up.  相似文献   

5.
Quinacrine, like a typical local anaesthetic, blocks the response of Electrophorus electricus electroplaque in vivo in a non-competitive manner and enhances, in vitro, the affinity of the cholinergic receptor present in Torpedo marmorata membrane fragments for acetylcholine. The interaction of quinacrine with T. marmorata membrane fragments can be followed by differential fluorescence spectroscopy either upon direct illumination (λEx = 350 nm) or by energy transfer from membrane proteins (λEx = 290 nm). Carbamylcholine and most of the cholinergic ligands tested cause an increase of the light intensity emitted by membrane-bound quinacrine under conditions of direct excitation; all these effects are blocked by a preincubation of the membrane fragments with the α-toxin from Naja nigricollis. When quinacrine is excited by energy transfer, carbamylcholine, phenyltrimethylammonium and hexamethonium cause an increase of fluorescence but flaxedil, tetraethylammonium and the α-toxin give a much smaller fluorescence increase or none.Local anaesthetics like prilocaine or quotane cause a decrease of fluorescence intensity of membrane-bound quinacrine in both the presence and absence of carbamylcholine. Quantitative studies on quinacrine binding and fluorescence as a function of quinacrine concentration reveal at least two populations (saturable and non-saturable) of binding sites, the saturable one being identical or closely related to the specific site of action of local anaesthetics. It is concluded that binding of cholinergic ligands primarily increases the quantum yield of a fraction of bound quinacrine.The curves of variation of fluorescence intensity with agonist and antagonist concentrations determined under conditions of direct illumination, closely resemble the binding curves determined at equilibrium with radioactive ligands. Under these conditions quinacrine therefore enables us to determine the occupancy of the receptor site by cholinergic ligands. On the other hand, the change of quinacrine fluorescence observed by energy transfer, which takes place with some of the cholinergic ligands but not with others, and does not correlate with any variation of the intrinsic fluorescence of membrane proteins, most likely reflects a change of structure bearing a qualitative relationship to the pharmacological activity of the tested ligands.  相似文献   

6.
7.
8.
Aggregation of the nicotinic acetylcholine receptor (AChR) at sites of nerve-muscle contact is one of the earliest events to occur during the development of the neuromuscular junction. The stimulus presented to the muscle by nerve and the mechanisms underlying postsynaptic differentiation are not known. The purpose of this study was to examine the distribution of phosphotyrosine (PY)-containing proteins in cultured Xenopus muscle cells in response to AChR clustering stimuli. Results demonstrated a distinct accumulation of PY at AChR clusters induced by several stimuli, including nerve, the culture substratum, and polystyrene microbeads. AChR microclusters formed by external cross- linking did not show PY colocalization, implying that the accumulation of PY in response to clustering stimuli was not due to the aggregation of basally phosphorylated AChRs. A semi-quantitative determination of the time course for development of PY labeling at bead contacts revealed early PY accumulation within 15 min of contact before significant AChR aggregation. At later stages (within 15 h), the AChR signal came to approximate the PY signal. We have reported the inhibition of bead-induced AChR clustering in response to beads by a tyrphostin tyrosine kinase inhibitor (RG50864) (Peng, H. B., L. P. Baker, and Q. Chen. 1991. Neuron. 6:237-246). RG50864 also inhibited PY accumulation at bead contacts, providing evidence for tyrosine kinase activation in response to the bead stimulus. These results suggest that tyrosine phosphorylation may play an important role in the generative stages of cluster formation, and may involve protein(s) other than or in addition to AChRs.  相似文献   

9.
The ability of cultured human arterial smooth muscle cells to regulate low density lipoprotein (LDL) receptor activity was tested. In contrast to human skin fibroblasts incubated with lipoprotein deficient medium under identical conditions, smooth muscle cells showed significantly reduced enhancement of 125I-labeled LDL and 125I-labeled VLDL (very low density lipoprotein) binding. Smooth muscle cells also failed to suppress LDL receptor activity during incubation with either LDL or cholesterol added to the medium, while fibroblasts shoed an active regulatory response. Thus, in comparison with the brisk LDL receptor regulation characteristic of skin fibroblasts, arterial smooth muscle cells have and attenuated capacity to regulate their LDL receptor activity. These results may be relevant to the propensity of these cells to accumulate LDL and cholesterol and form "foam cells" in the arterial wall in vivo, a process associated with atherogenesis.  相似文献   

10.
The assembly of the nicotinic acetylcholine receptor (AChR), an oligomeric cell surface protein, was studied in cultured muscle cells. To measure this process, the incorporation of metabolically labeled alpha-subunit into oligomeric AChR was monitored in pulse-chase experiments, either by the shift of this subunit from the unassembled (5 S) to the assembled (9 S) position in sucrose density gradients, or by its coprecipitation with antisera specific for the delta-subunit. We have found that AChR assembly is initiated 15-30 min after subunit biosynthesis and is completed within the next 60 min. The alpha-subunit is not overproduced, as all detectable pulse-labeled alpha-subunit can be chased into the oligomeric complex, suggesting that AChR assembly in this system is an efficient process. The rate of AChR assembly is decreased by metabolic inhibitors and by monensin, an ionophore that impairs the Golgi apparatus. We have observed that the gamma- and delta-subunits of AChR are phosphorylated in vivo. The delta-subunit is more highly phosphorylated in the unassembled than in the assembled state, indicating that its phosphorylation precedes assembly and that its dephosphorylation is concomitant with AChR assembly. These findings suggest that subunit assembly occurs in the Golgi apparatus and that phosphorylation/dephosphorylation mechanisms play a role in the control of AChR subunit assembly.  相似文献   

11.
Assays for cholinergic properties in cultured rat Schwann cells   总被引:2,自引:0,他引:2  
Cultured rat Schwann cells did not contain detectable levels of choline-acetyltransferase (less than 0.5 pmol ACh min-1 mg-1 of protein) or of acetylcholinesterase and nicotinic acetylcholine receptors. After adding Schwann cells to primary rat myotube cultures, the level of cholineacetyl-transferase in the co-cultures increased after three weeks to as high as 5 pmol ACh min-1 mg-1. The activity appearing in co-cultures sedimented at approximately 4S, and was inhibited 50% by 4(1-napthylvinyl)pyridine in the concentration range of 10-50 microM. After treatment of co-cultures with anti rat neural antigen-1 (RAN-1) and complement, 70-80% of the activity was lost, suggesting that it is induced in the Schwann cells. Attempts to obtain the effect by exposure of Schwann cells to medium conditioned by the myotube cultures, or by co-culture with fibroblasts gave levels of activity at or below the limit of detection.  相似文献   

12.
The cpn60 and cpn10 genes from psychrophilic bacterium, Oleispira antarctica RB8, showed a positive effect in Escherichia coli growth at low temperature, shifting its theoretical minimal growth temperature from +7.5 degrees C to -13.7 degrees C [Ferrer, M., Chernikova, T.N., Yakimov, M., Golyshin, P.N., and Timmis, K.N. (2003) Nature Biotechnol 21: 1266-1267]. To provide experimental support for this finding, Cpn60 and 10 were overproduced in E. coli and purified to apparent homogeneity. Recombinant O.Cpn60 was identical to the native protein based on tetradecameric structure, and it dissociates during native PAGE. Gel filtration and native PAGE revealed that, in vivo and in vitro, (O.Cpn60)(7) was the active oligomer at 4-10 degrees C, whereas at > 10 degrees C, this complex was converted to (O.Cpn60)(14). The dissociation reduces the ATP consumption (energy-saving mechanism) and increases the refolding capacity at low temperatures. In order for this transition to occur, we demonstrated that K468 and S471 may play a key role in conforming the more advantageous oligomeric state in O.Cpn60. We have proved this hypothesis by showing that single and double mutations in K468 and S471 for T and G, as in E.GroEL, produced a more stable double-ring oligomer. The optimum temperature for ATPase and chaperone activity for the wild-type chaperonin was 24-28 degrees C and 4-18 degrees C, whereas that for the mutants was 45-55 degrees C and 14-36 degrees C respectively. The temperature inducing unfolding (T(M)) increased from 45 degrees C to more than 65 degrees C. In contrast, a single ring mutant, O.Cpn60(SR), with three amino acid substitutions (E461A, S463A and V464A) was as stable as the wild type but possessed refolding activity below 10 degrees C. Above 10 degrees C, this complex lost refolding capacity to the detriment of the double ring, which was not an efficient chaperone at 4 degrees C as the single ring variant. We demonstrated that expression of O.Cpn60(WT) and O.Cpn60(SR) leads to a higher growth of E. coli at 4 degrees C ( micro (max), 0.22 and 0.36 h(-1) respectively), whereas at 10-15 degrees C, only E. coli cells expressing O.Cpn60 or O.Cpn60(DR) grew better than parental cells (-cpn). These results clearly indicate that the single-to-double ring transition in Oleispira chaperonin is a wild-type mechanism for its thermal acclimation. Although previous studies have also reported single-to-double ring transitions under many circumstances, this is the first clear indication that single-ring chaperonins are necessary to support growth when the temperature falls from 37 degrees C to 4 degrees C.  相似文献   

13.
Myosin types in cultured muscle cells   总被引:3,自引:2,他引:3       下载免费PDF全文
Fluorescent antibodies against fast skeletal, slow skeletal, and ventricular myosins were applied to muscle cultures from embryonic pectoralis and ventricular myocadium of the chicken. A number of spindle-shaped mononucleated cells, presumably myoblasts, and all myotubes present in skeletal muscle cultures were labeled by all three antimyosin antisera. In contrast, in cultures from ventricular myocardium all muscle cells were labeled by anti-ventricular myosin, whereas only part of them were stained by anti-slow skeletal myosin and rare cells reacted with anti-fast skeletal myosin. The findings indicate that myosin(s) present in cultured embryonic skeletal muscle cells contains antigenic determinants similar to those present in adult fast skeletal, slow skeletal, and ventricular myosins.  相似文献   

14.
Diffusion of fluorescently labeled macromolecules in cultured muscle cells.   总被引:5,自引:2,他引:3  
Myotubes were obtained from culture of satellite cells. They had a sarcomeric organization similar to that of muscle. The diffusion in the direction perpendicular to the fibers of microinjected fluorescein isothiocyanate-dextrans of molecular weight ranging from 9500 to 150,000 was examined by modulated fringe pattern photobleaching. On the time scale of the observation, 10-30 S, all of the dextrans were completely mobile in the cytoplasm. The diffusion coefficients were compared to the values obtained in water. The ratio D(cytoplasm)/D(w) decreased with the hydrodynamic radius R(h) of the macromolecules. The mobility of inert molecules in muscle cells is hindered by both the crowding of the fluid phase of the cytoplasm and the screening effect due to myofilaments: D(cytoplasm)/D(w) = (D/D(w)) protein crowding x (D/D(w))(filament screening). The equation (D/D(w))filament screening = exp(-K(L)RCh) was used for the contribution of the filaments to the restriction of diffusion. A free protein concentration of 135 mg/ml, a solvent viscosity of cytoplasm near that of bulk water, and a calculated K(L) of 0.066 nm(-1), which takes into account the sarcomeric organization of filaments, accurately represent our data.  相似文献   

15.
To examine the role of platelet-derived growth factor (PDGF) and the polyol pathway in the growth activity of smooth muscle cells (SMCs), [(3)H]-thymidine incorporation, [(125)I]-PDGF-BB binding and expression of PDGF-beta receptor protein were measured in rat aortic SMCs cultured with 5.5 or 20 mM glucose with or without anti-PDGF antibody or an aldose reductase inhibitor, epalrestat. SMCs cultured with 20 mM glucose demonstrated an accelerated thymidine incorporation compared with SMCs cultured with 5.5 mM glucose, which was prevented by anti-PDGF antibody. This acceleration of growth activity by 20 mM glucose was accompanied by an increase in PDGF-BB binding, which was due to the increased number of PDGF-beta receptors and the overexpression of PDGF-beta receptor protein. Epalrestat prevented all these abnormalities. These observations suggest that polyol pathway hyperactivity plays an important role in the proliferation of SMCs which may be mediated through the accelerated expression of PDGF-beta receptor protein.  相似文献   

16.
17.
The gene hclB encodes a histamine-gated chloride channel subunit in Drosophila melanogaster. Mutations in hclB lead to defects in the visual system and altered sensitivity to the action of ivermectin. To investigate whether this member of the Cys-loop receptors is common across the Insecta, we analysed the genomes of seven other insect species (Diptera, Hymenoptera, Coleoptera) and revealed orthologues of hclB in all of them. Sequence comparisons showed high identity levels between the orthologues, indicating similar constraints and conserved function between the species. Two D. melanogaster mutants, hclBT1 (P293S) and hclBT2 (W111*, a null mutation) were tested for the lapse into, and recovery from, paralysis induced by high temperature or the anaesthetic action of halothane. At 41 °C, the hclBT2 flies lapsed into coma faster than wild-type or the hclBT1 flies, while both mutants recovered more slowly. A substantially impaired recovery rate was also observed in hclBT1 after anaesthesia with halothane. Enhanced synaptic signalling at low-intensity light stimuli was registered on electroretinograms recorded from the two mutant strains. Our results suggest that HCLB may play an essential and conserved role in insect neurophysiology.  相似文献   

18.
Specific binding sites for vasoactive intestinal peptide (VIP), a potent vasodilatory polypeptide, and its effect on formation of intracellular cyclic AMP levels were studied in cultured vascular smooth muscle cells (VSMC) from rat aorta. Specific binding of 125I-labeled-VIP to cultured VSMCs was time- and temperature-dependent. Scatchard analysis of binding studies suggested the presence of two classes of high and low affinity binding sites for VIP; the apparent Kd and the number of maximal binding capacity were ∼8×10−9 M and 60,000 sites/cell (high-affinity sites) and ∼4×10−8 M and 140,000 sites/cells (low-affinity sites), respectively. Unlabeled VIP competitively inhibited the binding of 125I-labeled-VIP to its binding sites, whereas neither peptides structurally related to VIP, nor other vasoactive substances affected the binding. VIP stimulated formation of intracellular cyclic AMP in cultured VSMCs in a dose-dependent manner; the stimulatory effect of VIP on cyclic AMP formation was not blocked by propranolol and was additive with isoproterenol. The present study first demonstrates the presence of specific receptors for VIP in VSMCs functionally coupled to adenylate cyclase system. It is suggested that VIP exerts its vasodilatory effect through its specific receptors distinct from β-adrenergic receptors.  相似文献   

19.
Isolated cardiac muscle cells grown in vitro have been studied with respect to their ability to contract spontaneously and maintain myofibrillar organisation during division. These cells do not round up to undergo mitosis; division is achieved by the cell pinching itself in two in a selected area. This adaptation minimises disturbance to cell attachment sites and to myofibrils running between them. We correlated this with the persistence of beating during division and the maintenance of myofibrils with intact Z bands, even in close proximity to the nucleus, through division in many cells. Cessation of beating and disorganisation of myofibrils are therefore not prerequisites for division of cardiac muscle cells, as reported previously.  相似文献   

20.
The tone of arterial blood vessels is regulated by the catecholamines through their receptors on arterial smooth muscle cells (ASMC). beta 2-adrenergic receptors of ASMC mediate vasodilation through agonist mediated c-AMP production. Previous reports have described these receptors on freshly isolated blood vessels. This study demonstrates the presence of beta 2-adrenergic receptors on cultured rat ASMC and that these receptors are functional. beta-adrenergic receptor binding was measured using [3H]-dihydroalprenolol (DHA) binding to the membrane of cultured ASMC from normotensive Wistar-Kyoto rats. The ASMC beta-adrenergic receptors have a Kd of 0.56 +/- 0.16 nM and a Bmax of 57.2 +/- 21.7 fmol/mg protein. Competition binding studies revealed a much greater affinity of these receptors for epinephrine than norepinephrine, indicating the preponderance of a beta 2-adrenergic receptor subtype. Isoproterenol stimulation of cultured ASMC resulted in a 14 +/- 7 fold increase in intracellular c-AMP content of these cells indicating these receptors are functional. beta-adrenergic receptors of cultured ASMC provide an excellent system in which the association between hypertension and observed beta-adrenergic receptor differences can be further explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号