首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoaffinity labeling of (Na+K+)-ATPase with [125I]iodoazidocymarin   总被引:3,自引:0,他引:3  
A radioiodinated, photoactive cardiac glycoside derivative, 4'-(3-iodo-4-azidobenzene sulfonyl)cymarin (IAC) was synthesized and used to label (Na+K+)-ATPase in crude membrane fractions. In the dark, IAC inhibited the activity of (Na+K+)-ATPase in electroplax microsomes from Electrophorus electricus with the same I50 as cymarin. [125I]IAC binding, in the presence of Mg2+ and Pi, was specific, of high affinity (KD = 0.4 microM), and reversible (k-1 = 0.11 min-1) at 30 degrees C. At 0 degree C, the complex was stable for at least 3 h, thus permitting washing before photolysis. Analysis of [125]IAC photolabeled electroplax microsomes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (7-14%) showed that most of the incorporated radioactivity was associated with the alpha (Mr = 98,000) and beta (Mr = 44,000) subunits of the (Na+K+)-ATPase (ratio of alpha to beta labeling = 2.5). A higher molecular weight peptide (100,000), similar in molecular weight to the brain alpha(+) subunit, and two lower molecular weight peptides (12,000-15,000), which may be proteolipid, were also labeled. Two-dimensional gel electrophoresis (isoelectric focusing then SDS-PAGE, 10%) resolved the beta subunit into 12 labeled peptides ranging in pI from 4.3 to 5.5. When (Na+K+)-ATPase in synaptosomes from monkey brain cortex was photolabeled and analyzed by SDS-PAGE (7-14%), specific labeling of the alpha(+), alpha, and beta subunits could be detected (ratio of alpha(+) plus alpha to beta labeling = 35). The results show that [125I]IAC is a sensitive probe of the cardiac glycoside binding site of (Na+K+)-ATPase and can be used to detect the presence of the alpha(+) subunit in crude membrane fractions from various sources.  相似文献   

2.
Palytoxin (about 1 pM) increases the permeability of human erythrocytes. We now report its radiolabeling with 125I, followed by affinity purification on porcine kidney membranes. The resulting ligand binds fast and reversibly to intact erythrocytes. The Kd from velocity and equilibrium measurements is 2 X 10(-11) M, and the number of binding sites about 200 per cell. Binding is promoted by divalent cations (Ca2+ greater than Sr2+ greater than Ba2+) and by borate. It is inhibited by K+ (IC50 2 mM), ouabain (IC50 3 X 10(-9) M) and ouabagenin (IC50 6 X 10(-6) M). Conversely, [3H]ouabain is displaced by the substances and concentrations mentioned, and also by palytoxin (Ki 3 X 10(-11) M). Dog erythrocytes, which are known to possess a very low (Na+ + K+)-ATPase activity, are resistant to and lack specific binding sites for palytoxin. Binding of 125I-palytoxin, like that of [3H]ouabain, depends on the state of (Na+ + K+)-ATPase. ATP depletion decreases binding of both ligands to erythrocytes. Binding of 125I-palytoxin and [3H]ouabain to red cell stroma is partially restored by ATP. In contrast to [3H]ouabain, binding of 125I-palytoxin to red cell stroma is not promoted by Mg2+ and Pi. The data show that (a) all known promoters and inhibitors of palytoxin action on human red cells do so by enhancing or decreasing its binding, (b) (Na+ + K+)-ATPase serves as a receptor for palytoxin, and (c) the antagonism by ouabain is competitive at the receptor level. They support our previous hypothesis that palytoxin increases human erythrocyte permeability by formation of pores through (Na+ + K+)-ATPase or its close vicinity.  相似文献   

3.
The (Na+ + K+)-ATPase of cultured chick sensory neurons was studied with the aid of antibodies specific for this enzyme. Immunofluorescent labeling indicated the (Na+ + K+)-ATPase is evenly distributed on the neuronal cell surface; cell bodies, neurites, and growth cones were labeled with comparable intensity. Pulse-chase experiments with [35S]methionine, followed by immunoprecipitation, indicated concurrent synthesis and rapid association of the alpha (Mr = 105,000) and beta (Mr = 47,000) subunits. The alpha subunit is oligosaccharide-free while the beta subunit contains three Asn-linked oligosaccharide chains attached to a core peptide of 32,000 molecular weight. The time required for oligosaccharide processing of the newly synthesized beta subunit to endoglycosidase H-resistance suggests the (Na+ + K+)-ATPase takes 45-60 min to move from the site of polypeptide synthesis to the Golgi apparatus. Significantly less time was required for transport through the Golgi apparatus and insertion in the plasma membrane. From 30% to 55% of the newly synthesized (Na+ + K+)-ATPase did not appear on the cell surface but accumulated intracellularly. When tunicamycin was used to inhibit glycosylation of the beta subunit, there was no effect upon subunit assembly, intracellular transport, or degradation rate (t1/2 = 40 h).  相似文献   

4.
The orientation of amino groups in the membrane in the alpha- and beta-subunits of (Na+ + K+)-ATPase was examined by labeling with Boldon-Hunter reagent, N-succinimidyl 3-(4-hydroxy,5-[125I]iodophenyl)propionate), in right-side-out vesicles or in open membrane fragments from the thick ascending limbs of the Henles loop of pig kidney. Sealed right-side-out vesicles of basolateral membranes were separated from open membrane fragments by centrifugation in a linear metrizamide density gradient. After labeling, (Na+ + K+)-ATPase was purified using a micro-scale version of the ATP-SDS procedure. Distribution of label was analyzed after SDS-gel electrophoresis of alpha-subunit, beta-subunit and proteolytic fragments of alpha-subunit. Both the alpha- and the beta-subunit of (Na+ + K+)-ATPase are uniformly labeled, but the distribution of labeled residues on the two membrane surfaces differs markedly. All the labeled residues in the beta-subunit are located on the extracellular surface. In the alpha-subunit, 65-80% of modified groups are localized to the cytoplasmic surface and 20-35% to the extracellular membrane surface. Proteolytic cleavage provides evidence for the random distribution of 125I-labeling within the alpha-subunit. The preservation of (Na+ + K+)-ATPase activity and the observation of distinct proteolytic cleavage patterns of the E1- and E2-forms of the alpha-subunit show that the native enzyme structure is unaffected by labeling with Bolton-Hunter reagent. Bolton-Hunter reagent was shown not to permeate into sheep erythrocytes under the conditions of the labeling experiment. The data therefore allow the conclusion that the mass distribution is asymmetric, with all the labeled amino groups in the beta-subunit being on the extracellular surface, while the alpha-subunit exposes 2.6-fold more amino groups on the cytoplasmic than on the extracellular surface.  相似文献   

5.
The (Na+ + K+)ATPase is inhibited by the bee venom polypeptide, melittin. KCl and NaCl protect the enzyme from melittin inhibition. Analysis of the K+ and Na+ protection against melittin inhibition suggested a kinetic model which was consistent with slowly reversible melittin binding, and mutually exclusive binding of melittin with K+ and Na+. Accordingly, in the absence of salt, the KI for melittin inhibition = 1.2 microM, and the protection by KCl occurs with a KA,KCl = 0.6 mM. The protection by NaCl occurs with a KA,NaCl = 15 mM. Melittin inhibition of enzyme activity is due to direct interactions with the (Na+ + K+)ATPase, as demonstrated by photolabeling with [125I]azidosalicylyl melittin, which labeled the alpha subunit, but not the beta subunit of the (Na+ + K+)ATPase. Melittin and KCl reduced the extent of labeling. In non-covalent binding studies using [125I]azidosalicylyl melittin, the stoichiometry of binding was 1.6 melittin per (Na+ + K+)ATPase. Ligand-induced conformational changes of FITC-labeled (Na+ + K+)ATPase were examined in the presence and absence of melittin. K+ alone or melittin alone caused a fluorescence intensity quenching consistent with formation of an E2 form of the enzyme. The NaCl-induced (E2----E1) fluorescence intensity changes were maximal when the enzyme was treated with K+. NaCl-induced fluorescence changes did not occur when the enzyme was treated with melittin in the absence of K+. However, when K+ was present before the addition of melittin, NaCl-induced fluorescence intensity increases were observed, which were dependent upon the concentration of K+ in the preincubation mixture. The results of the labeling and conformational studies support the kinetic model and suggest a mechanism for inhibition of ion pumps by (poly)peptides.  相似文献   

6.
Regulation of rat brain (Na+ +K+)-ATPase activity by cyclic AMP   总被引:3,自引:0,他引:3  
The interaction between the (Na+ +K+)-ATPase and the adenylate cyclase enzyme systems was examined. Cyclic AMP, but not 5'-AMP, cyclic GMP or 5'-GMP, could inhibit the (Na+ +K+)-ATPase enzyme present in crude rat brain plasma membranes. On the other hand, the cyclic AMP inhibition could not be observed with purified preparations of (Na+ +K+)-ATPase enzyme. Rat brain synaptosomal membranes were prepared and treated with either NaCl or cyclic AMP plus NaCl as described by Corbin, J., Sugden, P., Lincoln, T. and Keely, S. ((1977) J. Biol. Chem. 252, 3854-3861). This resulted in the dissociation and removal of the catalytic subunit of a membrane-bound cyclic AMP-dependent protein kinase. The decrease in cyclic AMP-dependent protein kinase activity was accompanied by an increase in (Na+ +K+)-ATPase activity. Exposure of synaptosomal membranes containing the cyclic AMP-dependent protein kinase holoenzyme to a specific cyclic AMP-dependent protein kinase inhibitor resulted in an increase in (Na+ +K+)-ATPase enzyme activity. Synaptosomal membranes lacking the catalytic subunit of the cyclic-AMP-dependent protein kinase did not show this effect. Reconstitution of the solubilized membrane-bound cyclic AMP-dependent protein kinase, in the presence of a neuronal membrane substrate protein for the activated protein kinase, with a purified preparation of (Na+ +K+)-ATPase, resulted in a decrease in overall (Na+ +K+)-ATPase activity in the presence of cyclic AMP. Reconstitution of the protein kinase alone or the substrate protein alone, with the (Na+ +K+)-ATPase has no effect on (Na+ +K+)-ATPase activity in the absence or presence of cyclic AMP. Preliminary experiments indicate that, when the activated protein kinase and the substrate protein were reconstituted with the (Na+ +K+)-ATPase enzyme, there appeared to be a decrease in the Na+-dependent phosphorylation of the Na+-ATPase enzyme, while the K+-dependent dephosphorylation of the (Na+ +K+)-ATPase was unaffected.  相似文献   

7.
1. (Na+ + K+)-ATPase from rectal glands of Squalus acanthias contains 34 SH groups per mol (Mr 265000). 15 are located on the alpha subunit (Mr 106000) and two on the beta subunit (Mr 40000). The beta subunit also contains one disulphide bridge. 2. The reaction of (Na+ + K+)-ATPase with N-ethylmaleimide shows the existence of at least three classes of SH groups. Class I contains two SH groups on each alpha subunit and one on each beta subunit. Reaction of these groups with N-ethylmaleimide in the presence of 40% glycerol or sucrose does not alter the enzyme activity. Class II contains four SH groups on each alpha subunit, and the reaction of these groups with 0.1 mM N-ethylmaleimide in the presence of 150 mM K+ leads to an enzyme species with about 16% activity. The remaining enzyme activity can be completely abolished by reaction with 5-10 mM N-ethylmaleimide, indicating a third class of SH groups (Class III). This pattern of inactivation is different from that of the kidney enzyme, where only one class of SH groups essential to activity is observed. 3. It is also shown that N-ethylmaleimide and DTNB inactivate by reacting with the same Class II SH groups. 4. Spin-labelling of the (Na+ + K+)-ATPase with a maleimide derivative shows that Class II groups are mostly buried in the membrane, whereas Class I groups are more exposed. It is also shown that spin label bound to the Class I groups can monitor the difference between the Na+- and K+-forms of the enzyme.  相似文献   

8.
Two molecular forms of the (Na+,K+)-ATPase catalytic subunit have been identified in rat adipocyte plasma membranes using immunological techniques. The similarity between these two forms and those in brain (Sweadner, K. J. (1979) J. Biol. Chem. 254, 6060-6067) led us to use the same nomenclature: alpha and alpha(+). The K0.5 values of each form for ouabain (determined by inhibition of phosphorylation of the enzyme from [gamma-32P]ATP) were 3 X 10(-7)M for alpha(+) and 1 X 10(-5)M for alpha. These numbers correlate well with the K0.5 values for the two ouabain-inhibitable components of 86Rb+/K+ pumping in intact cells (1 X 10(-7) M and 4 X 10(-5)M). Quantitation of the Na+ pumps in plasma membranes demonstrated a total of 11.5 +/- 0.2 pmol/mg of membrane protein, of which 8.5 +/- 0.3 pmol/mg, or 75%, was alpha(+). Insulin stimulation of 86Rb+/K+ uptake in rat adipocytes was abolished by ouabain at a concentration sufficient to inhibit only alpha(+)(2-5 X 10(-6)M). Immunological techniques and ouabain inhibition of catalytic labeling of the enzyme from [gamma-32P]ATP demonstrated that alpha(+) was present in skeletal muscle membranes as well as in adipocyte membranes, but was absent from liver membranes. Since insulin stimulates increased Na+ pump activity in adipose and muscle tissue but not in liver, there is a correlation between hormonal regulation of (Na+,K+)-ATPase and the presence of alpha(+). We propose that alpha(+) is the hormonally-sensitive version of the enzyme.  相似文献   

9.
Rabbit antisera were raised against a series of synthetic peptides corresponding to regions of the alpha subunit of lamb kidney (Na+ + K+)-ATPase which chemical labeling studies and hydropathy plots of the amino-acid sequence suggest are exposed, accessible regions of the enzyme and may comprise the cation selectivity region, the ATP and cardiac glycoside binding sites, and the phosphorylation site. Five of six peptides tested (11-15 residues in length) were immunogenic and the antisera to four peptides recognized the intact, electroblotted (Western blot analysis) alpha subunit. Immunization with peptides conjugated to keyhole limpet haemocyanin (KLH) produced antipeptide antibodies for seven of nine conjugates. Antisera to four peptide conjugates recognized the native enzyme, confirming predictions that these sequence regions are exposed regions of the holoenzyme. In addition, a collection of four polyclonal antisera and five monoclonal antibodies raised to native holoenzyme were tested for their ability to bind to the peptide conjugates. In this way, two NH2-terminal sequence regions (1-12 and 16-30) and the putative ATP-binding site region (496-506) were identified as epitopes of the native enzyme. These results confirm some aspects of the transmembrane folding models proposed by Shull et al. and Kawakami et al. for the membrane-bound (Na+ + K+)-ATPase.  相似文献   

10.
Exposure of canine cardiac sarcolemmal vesicles to alkaline media (greater than or equal to pH 12) results in the extraction of 33% of the protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that specific proteins are being solubilized. Most of the phospholipid and sialic acid remains with the pellet after centrifugation. Electron microscopy reveals that alkaline treatment does not cause gross morphological damage to the vesicles, although freeze-fracture demonstrates some aggregation of intramembrane particles. The data indicate that high pH probably removes peripheral proteins and leaves the integral proteins in place. We find complete recovery of Na+-Ca2+ exchange activity in alkaline-extracted membranes after solubilization and reconstitution. These vesicles contain only 50% of the protein of vesicles reconstituted from control sarcolemma. Thus, the specific activity of Na+-Ca2+ exchange is doubled. Alkaline extraction is a useful and reproducible procedure for enrichment of the Na+-Ca2+ exchange protein. (Na+ + K+)-ATPase is completely inactivated by exposure to pH 12 medium though immunodetection shows that the (Na+ + K+)-ATPase proteins are not extracted. We detect both alpha and alpha + forms of (Na+ + K+)-ATPase and deduce that the Na+ pump proteins do not comprise a major fraction of sarcolemmal protein.  相似文献   

11.
(Na+ + K+)-ATPase activity is demonstrated in plasma membranes from pig mesenteric lymph nodes. After dodecyl sulfate treatment plasma membranes have an 18-fold higher (Na+ + K+)-ATPase activity, while their ouabain-insensitive Mg2+-ATPase is markedly lowered. A solubilized (Na+ +K+)-ATPase fraction, obtained by Lubrol WX treatment of the membranes, has very high specific activity (21 mumol Pi/h per mg protein). Concanavalin A has no effect on these partially purified (Na+ + K+)-ATPase, while inhibits (40%) this activity in less purified fractions which still contain Mg2+-ATPase activity.  相似文献   

12.
Inorganic lead ion in micromolar concentrations inhibits Electrophorus electroplax microsomal (Na+ + K+)-adenosine triphosphatase ((Na+ + K+)-ATPase) and K+-p-nitrophenylphosphatase (NPPase). Under the same conditions, the same concentrations of PbCl2 that inhibit ATPase activity also stimulate the phosphorylation of electroplax microsomes in the absence of added Na+. Enzyme activity is protected from inhibition by increasing concentrations of microsomes, ATP, and other metal ion chelators. The kinetics follow the pattern of a reversible noncompetitive inhibitor. No kinetic evidence is elicited for interactions of Pb2+ with Na+, K+, Mg2+, ATP, or p-nitrophenylphosphate. Na+- ATPase, in the absence of K+, and (Na+ + K+)-NPPase activity at low [K+] are also inhibited. ATP inhibition of NPPase is not reversed by Pb2+. The calculated concentrations of free [Pb2+] that produce 50% inhibition are similar for ATPase and NPPase activities. Pb2+ may act at a single independent binding site to produce both stimulation of the kinase and inhibition of the phosphatase activities.  相似文献   

13.
Annular lipid-protein stoichiometry in native pig kidney Na+/K+ -ATPase preparation was studied by [125I]TID-PC/16 labeling. Our data indicate that the transmembrane domain of the Na+/K+ -ATPase in the E1 state is less exposed to the lipids than in E2, i.e., the conformational transitions are accompanied by changes in the number of annular lipids but not in the affinity of these lipids for the protein. The lipid-protein stoichiometry was 23 ± 2 (α subunit) and 5.0 ± 0.4 (β subunit) in the E1 conformation and 32 ± 2 (α subunit) and 7 ± 1 (β subunit) in the E2 conformation.  相似文献   

14.
In the experiments carried out with the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution the authors investigated influence of the calix[4]arenes C-97 and C-107 (codes are shown) on ouabain effect on the Na+,K+-ATPase activity. It was shown that calixarenes in concentration 100 tiM inhibited by 97-98% the enzymatic Na+,K+-ATPase activity, while they did not practically influence on the basal Mg2+-ATPase activity, and suppressed much more effective than ouabain the sodium pump enzymatic activity: in the case of the action of the calixarenes the value of the apparent constant of inhibition I0.5 was < 0.1 microM while for ouabain it was 15-25 microM. The negative cooperative effect was typical of the inhibitory action of calixarenes, as well as ouabain: the value of Hills factor nH = 0.3-0.5 <1. The modelling compound M-3 (0.1 microM 4 microM)--a fragment of the calixarene C-107--did not practically influence the enzymatic activities as Na+,K+-ATPase and basal Mg2+-ATPase. Hence the influence of calixarene C-107 on the Na+, K+-ATPase activity is caused by cooperative action of two fragments M-3 and effect of calixarene bowl, rather than by simple action of the fragment M-3. Calixarenes C-97 and C-107, used in concentration corresponding to values of I0.5 (40 and 60 nM, accordingly), essentially stimulated inhibiting action of ouabain on the specific Na+, K+-ATPase activity in the memrane fraction. Under coaction of ouabain with calixarene C-97 or C-107 there was no additive effect of the action of these inhibitors on the Na+,K+-ATPase activity. Calixarene C-97 brought in the incubation medium in concentration of 10 nM not only led to inhibition of the Na+,K+-ATPase activity relative to control, but also simultaneously increased the affinity of the enzyme for the cardiac glycoside: the magnitudes of the apparent constant of inhibition I0.5 were 21.0 +/- 5.2 microM and 5.3 +/- 0.7 microM. It is concluded, that highly effective inhibitors of the Na+,K+-ATPase activity--calixarenes C-97 and C-107 can enhance the effect of the sodium pump conventional inhibitor--ouabain, increasing the affinity of the enzyme for the cardiac glycoside (on the example of calixarene C-97).  相似文献   

15.
16.
Antibodies against Lubrol-solubilized Electrophorus electroplax (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) and its 96 000-dalton polypeptide (P96) were raised in rabbits. The P96 antibody does not cross react with the (Na+ + K+)-ATPase from mammalian species and tissues, but it cross reacts with the (Na+ + K+)-ATPase from both Electrophorus electroplax and brain. The combination of enzyme with anti-P96 is found to inhibit phosphoryl enzyme formation to the same extent that it inhibits enzyme activity. The rate of K+-sensitive dephosphorylation of phosphoryl enzyme appears to be unchanged. These are also found to be true with the antibody against the whole enzyme. Upon tryptic digestion of the enzyme-anti-P96 complex only the large polypeptide of the enzyme is protected. In the case of enzyme-anti-Lubrol-solubilized enzyme complex, both the large and small polypeptides are protected, whereas preimmune sera are without any protecting effect. The data indicate that the phosphoryl acceptor polypeptide and the Lubrol-solubilized electroplax (Na+ + K+)-ATPase from which the polypeptide is derived are phylogenetically distinct from those of the mammalian (Na+ + K+)-ATPases. The selective tryptic resistance of the enzyme-anti-P96 complex indicates that the two polypeptides are spatially well separated, possibly on opposite sides of the membrane.  相似文献   

17.
An endogenous Na+, K+-ATPase inhibitor termed endobain E has been isolated from rat brain which shares several biological properties with ouabain. This cardiac glycoside possesses neurotoxic properties attributable to Na+, K+-ATPase inhibition, which leads to NMDA receptor activation, thus supporting the concept that Na+/K+ gradient impairment has a critical impact on such receptor function. To evaluate potential direct effects of endobain E and ouabain on NMDA receptors, we assayed [3H]dizocilpine binding employing a system which excludes ionic gradient participation. Brain membranes thoroughly washed and stored as pellets ('non-resuspended' membranes) or after resuspension in sucrose ('resuspended' membranes) were employed. Membrane samples were incubated with 4 or 10 nM ligand with or without added endobain E or ouabain, in the presence of different glutamate plus glycine combinations, with or without spermidine. [3H]dizocilpine basal binding and Na+, K+- and Mg2+-ATPase activities proved very similar in 'non-resuspended' or 'resuspended' membranes. Endobain E decreased [3H]dizocilpine binding to 'resuspended' membranes in a concentration-dependent manner, attaining roughly 50% binding inhibition with the highest endobain E concentration assayed. Among tested conditions, only in 'resuspended' membranes, with 4 nM ligand and with 1x10(-8) M glutamate plus 1x10(-5) M glycine, was [3H]dizocilpine binding enhanced roughly +24% by ouabain (1 mM). After Triton X-100 membrane treatment, which drastically reduces Na+, K+-ATPase activity, the effect of ouabain on binding was lost whereas that of endobain E remained unaltered. Results indicate that not only membrane preparation but also treatment and storage are crucial to observe direct endobain E and ouabain effects on NMDA receptor, which are not attributable to changes in Na+, K+-ATPase activity or to Na+/K+ equilibrium alteration.  相似文献   

18.
Renal basal-lateral and brush border membrane preparations were phosphorylated in the presence of [gamma-32P]ATP. The 32P-labeled membrane proteins were analysed on SDS-polyacrylamide gels. The phosphorylated intermediates formed in different conditions are compared with the intermediates formed in well defined membrane preparations such as erythrocyte plasma membranes and sarcoplasmic reticulum from skeletal muscle, and with the intermediates of purified renal enzymes such as (Na+ + K+)-ATPase and alkaline phosphatase. Two Ca2+-induced, hydroxylamine-sensitive phosphoproteins are formed in the basal-lateral membrane preparations. They migrate with a molecular radius Mr of about 130 000 and 100 000. The phosphorylation of the 130 kDa protein was stimulated by La3+-ions (20 microM) in a similar way as the (Ca2+ + Mg2+)-ATPase from erythrocytes. The 130 kDa phosphoprotein also comigrated with the erythrocyte (Ca2+ + Mg2+)-ATPase. In addition in the same preparation, another hydroxylamine-sensitive 100 kDa phosphoprotein was formed in the presence of Na+. This phosphoprotein comigrates with a preparation of renal (Na+ + K+)-ATPase. In brush border membrane preparations the Ca2+-induced and the Na+-induced phosphorylation bands are absent. This is consistent with the basal-lateral localization of the renal Ca2+-pump and Na+-pump. The predominant phosphoprotein in brush border membrane preparations is a 85 kDa protein that could be identified as the phosphorylated intermediate of renal alkaline phosphatase. This phosphoprotein is also present in basal-lateral membrane preparations, but it can be accounted for by contamination of those membranes with brush border membranes.  相似文献   

19.
The (Na+ + K+)-ATPase from dog kidney and partially purified membranes from HK dog erythrocytes were labeled with [3H]ouabain, solubilized with C12E8 and analyzed by HPLC through a TSK-GEL G3000SW column in the presence of C12E8, Mg2+, HPO4(2-) and glycerol at 20-23 degrees C. The peaks of [3H]ouabain bound to the enzyme from dog kidney and HK dog erythrocyte membranes corresponded to each other with apparent molecular weights of 470 000-490 000. In addition, these bindings of [3H]ouabain to the (Na+ + K+)-ATPase were observed to be stable at 20-23 degrees C for at least 18 h after the solubilization.  相似文献   

20.
The effects of two lectins, wheat germ agglutinin and concanavalin A, were studied on a variety of parameters of two highly purified (Na+ + K+)-ATPases (ATP phosphohydrolase, EC 3.6.1.3), from the rectal salt gland of Squalus acanthias and from the electroplax of Electrophorus electricus. Both lectins agglutinated the rectal gland enzyme equally, but wheat germ agglutinin inhibited (Na+ + K+)-ATPase activity much more. The electroplax enzyme was only marginally agglutinated and inhibited by the lectins. Neuraminidase treatment of the rectal gland (Na+ + K+)-ATPase had no effect on germ agglutinin inhibition. The inhibition of the rectal gland (Na+ + K+)-ATPase by wheat germ agglutinin could be reversed by N,N'-diacetylchitobiose, which has a high affinity for wheat germ agglutinin. Neither ouabain inhibition nor ouabain binding to the rectal gland enzyme was affected by wheat germ agglutinin. The p-nitrophenylphosphatase activity of the rectal gland enzyme was not inhibited by wheat germ agglutinin. Na+-ATPase activity, which reflects ATP binding and phosphorylation at the substrate site was inhibited by wheat germ agglutinin and this inhibition was reversed by potassium. Evidence is cited (Pennington, J. and Hokin, L.E., in preparation) that the inhibition of the (Na+ + K+)-ATPase by wheat germ agglutinin is due to binding to the glycoprotein subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号